Существует также не самая популярная точка зрения, которая объясняет туманность изначальным квантовым ограничением на точность измерений, а не фундаментальной размытостью реальности. В этом подходе — его обычно называют «бомовской механикой» в честь физика Дэвида Бома, но иногда говорят и о «теории де Бройля — Бома», включая авторство нобелевского лауреата Луи де Бройля, — частицы сохраняют резкие и тонные траектории. Эти траектории отличаются от тех, что предсказывает классическая физика (на частицы во время движения действует дополнительная квантовая сила), но, воспользовавшись приведенным в главе сравнением, скажем, что эти траектории можно проводить острым пером. Неопределенность и размытость, упоминаемые в более традиционной формулировке квантовой механики, проявляются как статистическая неопределенность начального состояния любой заданной частицы. Разница между двумя этими подходами, хотя и существенная в плане картины реальности, которую рисует каждая из теорий, практически никак не влияет на квантовые предсказания.
Инфляционная космология — это совокупность теорий (в отличие от конкретной теории), основанных на предположении о том, что на раннем этапе развития Вселенная прошла короткий период стремительного ускоренного расширения. Конкретный механизм возникновения этой фазы и конкретные детали ее развития варьируют от одной математической формулировки к другой. Простейшие варианты плохо уживаются со все более точными наблюдательными данными, поэтому фокус сместился к несколько более сложным версиям инфляционной теории. Критики утверждают, что эти самые более сложные версии менее убедительны, и, более того, демонстрируют, что инфляционная парадигма слишком гибкая и полностью опровергнуть ее невозможно никакими данными. Сторонники утверждают, что мы здесь являемся свидетелями нормального научного процесса: мы непрерывно совершенствуем свои теории, приводя их в соответствие с наиболее точной информацией, извлекаемой из наблюдательных измерений и математических соображений. Говоря в более общем плане и на более формальном языке, утверждение, широко принимаемое космологами, состоит в том, что Вселенная пережила некую фазу, на протяжении которой размер сопутствующего горизонта уменьшился. Менее ясно, верно ли эта фаза описывается инфляционной космологией, в которой динамика обусловлена равномерно распределенной энергией скалярного поля, пронизывающей пространство (см. примечание 3 к этой главе), как я описал, или эта фаза, возможно, вызвана другим механизмом (среди множества предложенных физиками теорий можно назвать такие, как отскакивающая космология, инфляция браны, сталкивающиеся миры — браны, теории с переменной скоростью света и т. п.). В главе 10 мы коротко обсудим возможность отскакивающей космологии в варианте Пола Стейнхардта, Нила Турока и их коллег, в которой Вселенная проходит многочисленные циклы космологической эволюции.
Для особенно усердного читателя позвольте пояснить важный момент, затуманивающий рассказ. Если все, что вам известно о данной физической системе, — это то, что она обладает не максимальной доступной энтропией, то второе начало термодинамики позволяет вам сделать не один, а целых два вывода: во-первых, наиболее вероятным результатом эволюции системы по направлению в будущее станет увеличение ее энтропии, а во-вторых, наиболее вероятным результатом эволюции системы по направлению в прошлое будет также увеличение ее энтропии. Таково неотъемлемое свойство симметричных относительно хода времени законов — уравнений, которые совершенно одинаково работают при развитии сегодняшней ситуации как вперед, так и назад. Проблема в том, что высокоэнтропийное прошлое, к которому приводят такие соображения, несовместимо с низкоэнтропийным прошлым, о котором свидетельствуют память и записи. (Мы помним, что частично растаявшие кубики льда раньше были менее растаявшими, то есть обладали меньшей энтропией, а не более растаявшими и, соответственно, более высокоэнтропийными.)
Что еще важнее, высокоэнтропийное прошлое подорвало бы нашу уверенность не в чем-нибудь, а в самих законах физики, потому что такое прошлое не включало бы в себя эксперименты и наблюдения, которые поддерживают эти самые законы. Чтобы избежать потери уверенности в наших представлениях, мы должны принудительно ввести низкоэнтропийное прошлое. Как правило, мы делаем это путем введения нового предположения, предложенного философом Дэвидом Альбертом и известного как гипотеза прошлого. Гипотеза эта гласит, что энтропия зафиксирована на низком уровне вблизи Большого взрыва и с тех пор в среднем стабильно возрастает. Именно такой подход мы неявно использовали в этой главе. В главе 10 мы явным образом проанализируем маловероятную, но представимую возможность рождения низкоэнтропийного состояния из предыдущей высокоэнтропийной конфигурации. Вводную информацию и подробности см. в главе 7 книги «Ткань космоса» [Грин Б. Ткань космоса. Пространство, время и текстура реальности. — М.: Либроком, 2015. — Прим. ред.].