Читаем До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной полностью

Математические описания энтропии позволяют сформулировать вопрос точно: в пределах произвольной области существует гораздо больше вариантов, в которых величина поля различается (выше здесь, ниже там, еще ниже вон там и так далее), чем тех, в которых она однородна (имеет одно и то же значение во всех точках); следовательно, требуемые условия обладают низкой энтропией. Однако здесь существует не проговариваемое вслух формальное положение, которое важно озвучить. Для простоты я воспользуюсь классическим языком, но все соображения здесь напрямую переводятся на язык квантовой физики. В микромире ни одна конфигурация частиц или полей фундаментально не выделена из всех прочих, поэтому в общем случае мы считаем их все равновероятными. Но это предположение опирается на то, что философы называют принципом безразличия. Выделяя при отсутствии априорных оснований одну микроскопическую конфигурацию относительно другой, мы присваиваем им равные вероятности реализации. Когда же мы сдвигаем фокус внимания на макромир, то вероятность одного макросостояния относительно другого определяется отношением числа микросостояний, реализующих каждое из них. Если одно из макросостояний обеспечивается вдвое большим числом микросостояний, чем другое, то и вероятность возникновения первого макросостояния будет вдвое выше, чем второго.

Обратите внимание, однако, что фундаментально принцип безразличия должен иметь эмпирическое основание. В действительности повседневный опыт подтверждает разумность применения принципа безразличия, хотя и неявного, во многих областях. Возьмите хотя бы наш пример с бросанием монет. Считая, что каждое «микросостояние» монет (состояние, задаваемое полным перечислением состояний всех монет: 1-я монета лежит орлом, 2-я монета — решкой, 3-я — решкой и так далее) равновероятно любому из остальных, мы делаем вывод, что те «макроскопические» ситуации (состояния, описываемые только общим числом орлов и решек, но не положением отдельных монет), которые могут быть реализованы большим числом микросостояний, более вероятны. Когда мы бросаем монеты, это предположение эмпирически подтверждается редкостью тех исходов, которые могут быть реализованы лишь небольшим числом микросостояний (таких как все орлы, к примеру) и заурядностью тех, которые могут быть реализованы множеством микросостояний (таких как половина орлов и половина решек).

Это имеет отношение и к нашей космологической дискуссии: когда мы говорим, что однородный кусочек инфляционного поля «маловероятен», мы точно так же привлекаем к делу принцип безразличия. Мы неявно предполагаем, что каждая возможная микроскопическая конфигурация поля (точное значение поля в каждой точке) имеет точно такую же вероятность появления, как и любая другая, — так что опять же вероятность любой заданной макроскопической конфигурации пропорциональна числу микросостояний, которые ее реализуют. Однако, в отличие от случая с бросанием монет, у нас нет никаких эмпирических данных в пользу этого предположения. Тот факт, что оно кажется нам разумным, основан на нашем повседневном опыте взаимодействия с макромиром, где принцип безразличия подтверждается наблюдениями. Но для космологического развертывания нам доступен лишь один экспериментальный прогон. Бескомпромиссный эмпирический подход подсказывает, что какими бы особыми ни казались некоторые конфигурации с позиции принципа безразличия, но если они ведут к наблюдаемой нами Вселенной, то они выделены и как класс заслуживают называться не просто «вероятными», но «определенными» (в обычном условном смысле всех научных объяснений). Математически такой сдвиг в том, что мы называем вероятным и маловероятным, известен как изменение меры на пространстве конфигураций (см. глава 2, примечание 14). Начальная мера, присваивающая равные вероятности всем возможным конфигурациям, называется «плоской» мерой. Таким образом, наблюдения могут мотивировать нас на введение «неплоской» меры, которая выделяет некоторые классы конфигураций как более вероятные.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука