Бекенштейна такой вариант совершенно не устраивал. Черные дыры, заявил он, обладают энтропией. Более того, когда что-то падает внутрь, энтропия черной дыры увеличивается ровно настолько, чтобы мир мог не беспокоиться о нарушении второго начала. Чтобы ухватить суть рассуждений Бекенштейна, для начала обратите внимание, что, когда что-то падает в черную дыру, масса этого чего-то не пропадает. Каждый, кто изучал общую теорию относительности и понял ее, согласится, что всякий объект, падающий в черную дыру, увеличивает ее массу. Чтобы представить себе визуально этот процесс, нарисуйте горизонт событий черной дыры — сферическую поверхность, определяющую ее границу и отмечающую рубеж, после которого возвращение невозможно. Математика показывает, что радиус горизонта событий пропорционален массе черной дыры: чем меньше масса, тем меньше горизонт, и наоборот. Если вы бросаете что-нибудь внутрь, масса черной дыры увеличивается, так что следует представить, что и горизонт увеличивается. Черная дыра питается, и ее сферическая талия полнеет.
Следуя духу подхода Бекенштейна[317]
, представьте теперь, что вы бросаете в черную дыру специальный зонд, спроектированный так, чтобы с его помощью можно было посмотреть, как черная дыра отзывается на энтропию. Для этого мы приготовим единичный фотон с длиной волны настолько большой, то есть точки его возможного местонахождения так разбросаны в пространстве, что, когда он встретится с черной дырой, самое точное описание результата встречи, какое мы сможем дать, будет выражено одной-единственной единицей информации: фотон либо упал в черную дыру, либо нет. Мы специально сделали так, чтобы положение фотона было настолько туманным, что в случае его захвата черной дырой мы не могли дать более точное описание — в частности, мы не могли бы сказать, что фотон проник в черную дыру через данную конкретную точку на горизонте событий. Такой фотон несет на себе одну единицу энтропии, так что мы получаем возможность проверить математически, как реагирует черная дыра на съедение блюда с единичной энтропией.Поскольку наш фотон обладает энергией и поскольку энергия и масса — это две стороны одной и той же монеты Эйнштейна (из формулы Е = mc2
), если черная дыра съедает фотон, ее масса слегка увеличивается, а горизонт событий слегка расширяется. Но суть в деталях. Бекенштейн заметил принципиально важную закономерность: бросая в черную дыру единицу энтропии, мы увеличиваем ее горизонт событий на единицу площади (эта так называемая квантовая единица площади, или планковская площадь, составляет примерно 10-70 м2)[318]. Бросьте внутрь две единицы энтропии — и площадь поверхности увеличится на две единицы площади. И так далее. Таким образом, создается впечатление, что площадь поверхности горизонта событий черной дыры отслеживает величину поглощенной дырой энтропии. Бекенштейн построил на этой закономерности гипотезу: полная энергия черной дыры задается полной площадью ее горизонта событий (измеренной в планковских единицах). Именно эту новую идею Бекенштейн изложил Уилеру.Бекенштейн не мог объяснить удивительную связь между энтропией черной дыры и ее внешней поверхностью, ее горизонтом событий; связь эта неожиданна, потому что энтропия обычного объекта, такого как чашка чая, содержится в его внутренней части, в его объеме. Не мог Бекенштейн и объяснить, как его гипотеза соотносится с традиционными взглядами, согласно которым энтропия должна перечислять возможные перестановки микроскопических ингредиентов черной дыры (это положение останется по большей части неприкосновенным до середины 1990-х гг., когда теория струн поможет в нем разобраться). Но как описательное средство его гипотеза предлагала количественный способ спасения второго начала термодинамики. Все исправляется мгновенно: отслеживая полную энтропию, вам нужно подсчитывать не только вклад, который вносят вещество и излучение, но и вклад от черных дыр. Бросание чашек чая в черную дыру снижает энтропию на вашем обеденном столе, но если вы подсчитаете увеличение площади поверхности горизонта событий черной дыры, то поймете, что снижение энтропии, которое вы наблюдаете дома, компенсируется увеличением энтропии в самой черной дыре. Предложив алгоритм включения черных дыр в общий энтропийный учет, Бекенштейн, по существу, «реанимировал» второе начало, позволив ему вновь ходить с высоко поднятой головой.