Читаем До предела чисел. Эйлер. Математический анализ полностью

Сразу же по приезду в Санкт-Петербург Эйлер одно за другим начал делать открытия, которые оказали огромное влияние на его научную жизнь. Считается, что первым из его моментов славы стало создание функции Г (заглавная греческая буква "гамма*), базового инструмента математического анализа. Намеки на Г появлялись в переписке между Даниилом Бернулли и Кристианом Гольдбахом уже около 1720 года, но только в 1729 году Эйлер впервые дал ей определение, а в 1814 году Адриен Мари Лежандр (1752-1833) ввел обозначение "гамма", записав его так: Г(x). Гамма-функция часто появляется в распределении вероятностей и активно используется физиками.

Обычно ее можно встретить в описании явлений, требующих применения экспоненциальных интегралов, типичных для атомной физики; она также распространена в астрофизике, динамике жидкостей и сейсмологии. Эта функция применяется во многих областях математики, особенно в комбинаторике и, в частности, в анализе дзета-функций Римана, имеющих огромное значение в изучении простых чисел. Целью Эйлера было найти способ интерполяции, как это называлось в то время, заключавшейся в том чтобы, зная крайние значения переменной, вывести ее промежуточные значения естественным образом, не прибегая к искусственным методам. Рассмотрим пример. Так называемый факториал натурального числа л! в арифметике, впервые встречающийся у Кристиана Крампа (1760-1826), равен

n! = n(n - 1)(n -2) · ... · 3 · 2 · 1,

то есть является произведением всех натуральных чисел, меньших или равных л. Факториал — чрезвычайно быстро растущая функция, как видно из следующей таблицы.

n

n!

0

1

1

1

2

2

3

6

4

24

5

120

6

720

7

5040

8

40 320

9

362 880

10

3628 800

100

9,3326215444 · 10

157

1000

4,0238726008 · 10

2567

10000

2,8462596809 · 10

35659

100000

2,824229408 · 10

456573

Факториал определен только для натуральных чисел; последовательность факториала прерывна. Интерполировать факториал означает продлевать его, пока не найдется непрерывная функция f(x) которая равна n!, когда значение х равно значению натурального n.

Почти банальным примером является понятие квадрата числа. Пусть дано натуральное число n, его квадрат будет равен n2 = n · n. Его можно интерполировать на любое вещественное число х, просто записав f(x) = х2. Эйлер интерполировал факториал n! и в 1729 году нашел непрерывную функцию f(x), которая вела себя как факториал, когда x = n был натуральным числом. Мы будем называть ее Г(х), что, собственно, и является ее современным обозначением. Эйлер определил значение

Г(x) в каждой точке посредством того, что сегодня мы бы назвали пределом:

Г(x) = limn->(n!nx)/(x (х+1)(х+2)...(х+n).

Сейчас вместо этого выражения используется интегральный вид:

Г(x) = 0 е-ttz-1dt.

Он более прост, с ним легче работать, и к тому же он действителен в области комплексных чисел. При глубоком изучении Г(х) из нее можно получить огромное количество интереснейших для математиков формул, например

Г(1 - z)Г(z) = /sin(z),

которая связывает гамма-функцию с числом и тригонометрическими функциями.

ДРУГИЕ ФОРМЫ ГАММА-ФУНКЦИИ

Определить Г(х) можно разными способами. В XIX веке была особенно популярна формула Карла Вейерштрасса (1815-1897), в которой используется постоянная Эйлера (она обозначается буквой у" тоже "гамма", но строчная):

Г(z) = e-z/z n=1(1 + z/n)-1ez/n

Для этой функции верно:

Г(1)=1

Г(1 + х) = хГ(х).

При помощи гамма-функции выводится знаменитая формула Стирлинга (1692-1770), которая считается образцом красоты символов, поскольку в ней гармонически сочетаются постоянные ,е и число n:

n! = (2n)(n/e)n

И наконец, скажем о связи между гамма и дзета-функцией (z). Последняя имеет огромное значение в теории чисел, в частности в интереснейшей области простых чисел:

(z)Г(z) = 0tz-1/(et-1)dt.

БЕТА-ФУНКЦИЯ

Изучая гамма-функцию, Эйлер натолкнулся на еще одну, получившую название "бета" и обозначенную буквой В. Она также очень полезна в области анализа, и ее можно определить разными способами. Один из них — с помощью интеграла:

при условии, что действительные части х и у являются положительными. Еще один способ состоит в использовании гамма-функции, которую мы определили выше:

В(х,у) = Г(x)Г(y)/Г(x+y).

ЧИСЛА ФЕРМА

После изучения гамма- и бета-функций Эйлер занялся теорией чисел, вдруг резко изменив направление своей научной работы, что было для него весьма характерным. В частности, его привлек вопрос, который за век до того оставил нерешенным французский ученый Пьер Ферма (1601-1665).

МАТЬ ВСЕХ ФУНКЦИЙ

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное