Читаем Домашняя школа для дошкольников полностью

И вот наступает минута моего триумфа, та, которую я так долго ждал и так упорно готовил. Петя вдруг восклицает, тыча пальцем в лист бумаги: «Ой, смотрите: да это же пэ, вэ, пэ, вэ, пэ!» Дима вскакивает очень взволнованно: «Да, да, папа, я уже давно хотел тебе это сказать!» «Значит, должно быть еще одно решение», — подхватывает Женя.

— А давайте, — предлагает Дима, — принесем решение той задачи и найдем, чего не хватает.

Ходить, конечно, далеко не приходится. Подобно известному роялю в кустах, конверт с решениями всех предыдущих задач оказался здесь же, на столе. Какую из задач принять за основу? Мальчики предлагают полоски бумаги с кружками, и очень скоро, уже на четвертом шаге, мы нашли недостающее десятое решение.

(Видимо, ни один триумф не обходится без небольшого конфуза. Когда мы раскладывали полосочки с бусами, одна из них случайно перевернулась на 180 градусов. В результате одно из решений пропало, а другое, ему симметричное, оказалось повторенным дважды. Мы едва не запутались.)

То, что произошло сегодня, кажется не крайне важным. Мы не просто решили задачу. Мы решили ее путем сведения к другой, изоморфной ей задаче. Это важнейшая общематематическая идея, и разве не чудо, что нашелся такой материал, на котором эту идею удалось продемонстрировать шестилеткам? Да к тому же так, что они сами до нее додумались!

Дошкольники и центральное понятие математики

События на нашем кружке меняются с головокружительной быстротой. Не успели мы разделаться с одной великой идеей, как тут же на подходе другая. Как-то сам собой возникает вопрос: почему каждый раз получается ровно десять решений?

В самом деле больше решений не существует или мы их просто не сумели найти? Как доказать, что их всего десять?

Доказательство — это ритуал, принятый в математике?

Итак, доказательство. Центральное понятие для всей математики, я бы даже сказал, формообразующее, выделяющее математику из всех других наук. Представление о том, что является доказательством и что не является, менялось на протяжении веков и обрело современный вид лишь приблизительно на рубеже XX века (увлекательный рассказ об этом можно прочитать в недавно вышедшей книге Мориса Клайна «Математика. Утрата определенности»).

Математикам прошлых эпох, даже самым великим, казались вполне убедительными такие рассуждения, которые сейчас с негодованием отвергнет любой школьный учитель. Если вдуматься, мы имеем дело с очень странным явлением: почему какие-то абстрактные рассуждения делают для нас то или иное утверждение более убедительным?

Один очень умный старшеклассник задал учителю такой вопрос: «То, что в равнобедренном треугольнике углы при основании равны, совершенно очевидно, можно убедиться на примерах. Тем не менее нам этот факт доказывают. С другой стороны, то, что напряжение равно силе тока, умноженной на сопротивление, нисколько не очевидно. Однако этот факт нам почему-то не доказывают, а только иллюстрируют опытами. Почему?»

Этот вопрос — редкая попытка проникнуть в суть явлений. Большинство же школьников, я убежден, воспринимают доказательства как некий принятый в математике ритуал. Так полагается, и все. Как тут не вспомнить историю, относящуюся, кажется, к XVIII веку — про человека, который сказал своему учителю: «К чему все эти туманные рассуждения? Вы же дворянин, и я тоже. Дайте честное слово, что теорема верна, — мне этого вполне достаточно».

Смешно, правда? Ну а мы сами — образованные, современные люди, даже научные работники — мы разве не такие?

Где искать точки соприкосновения научной проблемы с миром детства?

Встречали ли вы когда-нибудь в учебниках истории доказательства того, что все описываемые события происходили именно там, именно тогда и именно так, как они описаны (да и вообще имели место)? Нет, никаких даже намеков на доказательства в этих учебниках нет. И вот странное дело — это никак не уменьшает нашего доверия к изложенным фактам. «Честное слово дворянина» — в данном случае автора учебника — оказывается для нас вполне убедительным основанием. Как видим, проблема не так проста, даже если касается взрослых.

А к детям какое это имеет отношение? Вот какое: мне кажется, необходимо осознать проблему в целом, только тогда удастся найти какие-то ключи, какие-то пути и точки соприкосновения этой проблемы с миром детства (курсив мой.?ВЛ).

Важная подсказка методистам и тем родителям, которые хотят понять, чему учить детей, как выбрать учебный материал

В числе первых попыток были задачи из серии «четвертый — лишний» с неоднозначными ответами, о чем я рассказывал в предыдущей статье. В них я обращал внимание детей на важность не только правильного ответа, но и правильного объяснения.

Перейти на страницу:

Похожие книги