Если на корабле положить руль на борт на 3 — 4 градуса, то корабль начнёт описывать круг очень большого диаметра и будет происходить изменение угла курса. Если это делается вне видимости берегов и в пасмурную погоду, то большинство пассажиров даже не заметят манёвра изменения курса. Если же на полном ходу быстроходного корабля (узлов 25 — 30) резко положить руль на борт градусов на 20 — 30, то палуба в процессе перекладки руля дёрнется под ногами в сторону обратную направлению перекладки руля; потом начнется вполне ощутимое вестибулярным аппаратом человека изменение курса, сопровождающееся вполне видимым креном до 10 и более градусов.
Хотя в обоих случаях изменение курса может быть одинаковым, гидродинамические характеристики корабля в первом случае слабого манёвра не будут сильно отличаться от режима прямолинейного движения; во втором случае, когда корабль начнет входить в циркуляцию диаметром не более 4 — 5 длин корпуса, — будет падать скорость хода, появится значительная по величине поперечная составляющая скорости обтекания корпуса и крен, а общая картина обтекания корпуса и гидродинамические характеристики будут качественно отличаться от бывших при прямолинейном движении или слабых манёврах.
Разделение манёвров на сильные и слабые в ряде случаев позволяет существенно упростить моделирование поведения замкнутой системы в процессе слабого маневрирования без потери качества результатов моделирования. Поскольку выбор меры качества всегда субъективен, то и разделение манёвров на сильные и слабые определяется субъективизмом в оценке качества моделирования и управления. Но, если такое разделение возможно, то слабому маневру можно подыскать аналогичный ему (в ранее указанном смысле) балансировочный режим.
Для физически однокачественных процессов разделение манёвров на сильные и слабые основано на моделировании в безразмерном времени. Поскольку понятие о времени и его измерение связано с выбором эталонной частоты, то в качестве эталонных частот могут быть взяты и собственные частоты колебаний объектов управления, замкнутых систем, процессов взаимодействия замкнутых систем и окружающей среды. Это приводит к понятию динамических подобных (частично или полностью) объектов, систем и процессов, для которых процессы (балансировочные режимы и манёвры), отнесённые ко времени, основанном на сходственных собственных частотах, в некотором смысле идентичны. Подробно это рассматривает теория подобия, являющаяся разделом многих частных отраслей знания. Сопровождение слова «идентичность» эпитетом «некоторая» обусловлено тем, что подобие может осуществляться на разных физических носителях информационных процессов (управления), на разных уподоблениях друг другу параметров подобных систем.
Уподобление — обезразмеривание, т.е.
Анализ течения подобного моделирующего процесса может протекать в более высокочастотном диапазоне, чем течение реального подобного моделируемого процесса: это даёт возможность заглянуть в будущие варианты развития моделируемого процесса, что является основой решения задач управления вообще и задачи о предсказуемости, в частности. Примеры такого рода моделирования — все аэродинамические и прочностные эксперименты и расчёты в авиации, судостроении и космонавтике. Моделирование высокочастотного процесса в низкочастотном диапазоне позволяет отследить причинно-следственные связи, которые обычно ускользают от наблюдателя при взгляде на скоротечный реальный процесс. Примером такого рода является скоростная и