Открытие антипротона было важно еще и потому (помимо доказательства существования самой частицы), что наглядно продемонстрировало
ОТКРЫТИЕ КВАРКОВ
С 1967 по 1973 г. Джером Фридман, Генри Кендалл и Ричард Тейлор провели серию экспериментов, которые помогли установить существование кварков внутри протонов и нейтронов. Эксперименты проводились на линейном ускорителе, который, в отличие от прежних бэватронов и циклотронов, ускорял электроны на прямой траектории. Лаборатория в Пало–Альто получила название Стэнфордский линейный ускоритель, или сокращенно SLAC. Электроны, разогнанные на SLAC, начинали излучать фотоны. Эти энергичные — а значит, коротковолновые — фотоны взаимодействовали с кварками внутри атомных ядер. Фридман, Кендалл и Тейлор измерили, как меняется частота взаимодействий с ростом энергии столкновения. Если бы у частиц в атомном ядре не было внутренней структуры, эта частота падала бы. При наличии структуры частота тоже падала, но значительно медленнее. Как и в опыте Резерфорда, приведшем много лет назад к открытию атомного ядра, налетающие частицы (в данном случае фотоны) рассеивались иначе, чем это происходило бы, если бы протон представлял собой просто шарик без внутренней структуры.
Тем не менее даже в экспериментах, проводившихся на необходимом энергетическом уровне, распознать и классифицировать кварки оказалось непросто. Для этого и технологии, и теория должны были достичь такой стадии развития, на которой экспериментальные движения частиц можно было предсказать и понять. Глубокие эксперименты и теоретический анализ, проведенный физиками–теоретиками Джеймсом Бьеркеном и Ричардом Фейнманом, показали, что частота взаимодействий хорошо согласуется с предположением о существовании внутри атомного ядра некой структуры; таким образом было доказано наличие внутренних элементов протонов и нейтронов, то есть кварков. В 1990 г. за это открытие Фридман, Кендалл и Тейлор были удостоены Нобелевской премии.
Никто не мог надеяться на то, что кварки и их свойства можно будет увидеть собственными глазами. В этой области реально применимы только непрямые методы исследований. Тем не менее измерения подтвердили существование кварков. То, что предсказания и измеряемые характеристики хорошо согласуются между собой, а также вполне наглядная гипотеза о кварках говорили в пользу их существования.
Со временем физикам и инженерам удалось создать новые, усовершенствованные типы ускорителей, способные разгонять частицы до все более высоких энергий. Чем совершеннее становились ускорители, тем более высокоэнергетические частицы можно было использовать для зондирования структуры вещества — и, соответственно, тем меньшие расстояния исследовать. Открытия, сделанные в этот период, помогли разработать Стандартную модель — ее элементы обнаруживались один за другим.
ЭКСПЕРИМЕНТЫ С НЕПОДВИЖНОЙ МИШЕНЬЮ ИЛИ КОЛЛАЙДЕРЫ?
Эксперименты, аналогичные тем, благодаря которым были открыты кварки, где пучок ускоренных электронов направляется на закрепленный образец вещества, называются экспериментами с
В современных ускорителях, работающих со сверхвысокими энергиями, все иначе. В них происходят столкновения двух потоков частиц, причем оба потока предварительно разгоняются до высоких энергий (рис. 21). Несложно догадаться, что пучки при этом должны быть точно сфокусированы и направлены в одну и ту же крошечную область — только так можно обеспечить какие бы то ни было столкновения. Это значительно уменьшает число получаемых столкновений, поскольку вероятность того, что частица в пучке взаимодействует с чем-нибудь во фрагменте вещества, намного больше вероятности ее взаимодействия с частицей во встречном пучке.
РИС. 21. В одних ускорителях элементарных частиц пучок частиц взаимодействует с неподвижной мишенью. В других — два пучка частиц сталкиваются друг с другом