Читаем Достучаться до небес: Научный взгляд на устройство Вселенной полностью

Эксперименты, связанные с точным измерением электрослабых взаимодействий, помогли исследовать множество самых разных процессов. К примеру, были измерены массы переносчиков слабого взаимодействия, скорости распада на разные типы частиц, а также явления асимметрии в сигналах регистрируемых передней и задней (по отношению к движению частиц) частями детектора.

Точное измерение электрослабых взаимодействий стало возможным в результате разумного применения эффективной теории. Как только физики смогли провести достаточное количество экспериментов, чтобы точно определить некоторые параметры Стандартной модели (к примеру, силы, задействованные в каждом из фундаментальных взаимодействий), оказалось, что все остальное можно предсказать. Ученые проверяют все экспериментальные данные на непротиворечивость и ищут отклонения, которые могли бы указать на какое-то недостающее звено. До сих пор все известные наблюдения и измерения указывают на то, что Стандартная модель прекрасно работает — настолько хорошо, что мы до сих пор не имеем никаких зацепок, по которым можно было бы судить, что нас ожидает на следующем уровне. Пока ясно одно: что бы это ни было, его влияние при достигнутых на LEP энергиях чрезвычайно слабо.

Из этого можно сделать вывод о том, что получить больше информации о еще более тяжелых частицах и еще более энергичных взаимодействиях невозможно без прямого исследования процессов, протекающих при энергиях, значительно более высоких, чем все, что удалось достичь на LEP и SLAC. В столкновениях электронов попросту не будут получены энергии, нужные, по мнению ученых, для ответа на вопрос о том, что придает частицам массу и почему они обладают именно такой массой, какой обладают, по крайней мере этого не удастся сделать в ближайшем будущем. Для ответа на эти вопросы нужны столкновения протонов.

Вот почему физики решили разгонять в тоннеле, построенном в 1980–е гг. для LEP, протоны, а не электроны. В конце концов Центр вывел LEP из эксплуатации, чтобы дать дорогу новому колоссальному проекту—Большому адронному коллайдеру. Поскольку протоны излучают во много раз меньше энергии, чем электроны, сам процесс разгона проходит гораздо более эффективно, и протоны удается разогнать до более высоких энергий. При столкновениях протонов, конечно, возникает больше мусора, чем при столкновениях электронов, и перед экспериментаторами встает множество сложнейших проблем, но при работе с пучком протонов появляется шанс задействовать в одном столкновении достаточно высокие энергии и получить прямой ответ на вопрос, который не дает нам покоя уже несколько десятилетий.

Но, прежде чем окончательно решить, какие именно частицы сталкивать в коллайдере, мы должны ответить еще на один вопрос. Итак, в столкновении участвует два пучка. Мы уже решили, что один из пучков должен состоять из протонов. Но из чего должен состоять второй пучок — из тех же частиц (протонов) или из соответствующих античастиц (антипротонов)? Масса протона и антипротона одинакова, поэтому и излучают они при разгоне одинаково, поэтому при выборе между тем и другим следует использовать иные критерии.

Ясно, что протонов в окружающем нас мире гораздо больше, чем антипротонов. Антипротон практически невозможно встретить просто так, случайно, ведь если бы он появился, то тут же аннигилировал бы с одним из многочисленных протонов, превратившись в энергию или другие, более элементарные частицы. Почему же тогда вопрос об использовании антипротонов вообще рассматривается? Какую выгоду мы от них получим?

Ответить на этот вопрос можно просто: немалую. Во–первых, разгонять пучки будет проще, поскольку одно и то же магнитное поле можно использовать для разгона протонов и антипротонов в противоположных направлениях. Но главный аргумент — частицы, которые можно получить при столкновении.

Частицы и античастицы обладают одинаковой массой, но противоположным зарядом. Это означает, что суммарный заряд сталкивающихся частиц вполне соответствует заряду, который может нести чистая энергия, — а именно нулевому заряду. Согласно формуле Е = mc2 это означает, что при столкновении частица и античастица могут целиком превратиться в энергию, которая, в свою очередь, может породить любую другую пару частица — античастица; для этого нужно лишь, чтобы новая пара не была слишком тяжелой и обладала достаточно сильным взаимодействием с первоначальной парой.

Возникшие частицы могут оказаться совершенно новыми и обладать зарядом, отличным от заряда частиц Стандартной модели. У новой пары нет суммарного заряда, как и у первоначальной пары. Поэтому даже если заряды новых частиц будут отличаться от зарядов Стандартной модели, вместе они будут иметь нулевой заряд и — по крайней мере в принципе — смогут возникнуть.

Перейти на страницу:

Похожие книги

Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература