Это не означает, что в науке сохраняется всякая теория. Иногда она просто оказывается ошибочной. Примером может служить первая теория света, сформулированная Евклидом и в IX в. возрожденная в исламском мире арабским математиком аль–Кинди (в ней утверждалось, что свет испускают глаза человека). Несмотря на то что другие ученые, такие как персидский математик ибн-Саль, на основании этого ложного утверждения верно описывали явления (то же преломление, к примеру), теория Евклида и аль-Кинди — появившаяся, кстати говоря, раньше, чем наука и современные научные методы — оказалась попросту неверна. Она не вошла в позднейшие теории, а была отброшена.
Ньютон не предвидел появления новых концепций в теории света. Он выдвинул так называемую «корпускулярную» теорию, которая никак не согласовывалась с волновой теорией света, разработанной его соперниками — Робертом Гуком в 1664 г. и Христианом Гюйгенсом в 1690 г. Споры по этому поводу продолжались не один десяток лет. Только в XIX в. Томас Юнг и Огюстен–Жан Френель измерили интерференцию света и тем самым подтвердили, что свет имеет волновую природу.
Позже развитие квантовой теории показало, что Ньютон в каком‑то смысле тоже был прав. Согласно идеям квантовой механики, свет действительно состоит из отдельных частиц, получивших название
РИС. 5. Современной концепции света предшествовали геометрическая и волновая оптика. Они до сих применимы при определенных условиях
Корпускулярная теория света, предложенная Ньютоном, подтверждается наблюдаемыми результатами. Тем не менее ньютоновы частицы света не имеют волновой природы и потому совсем не похожи на фотоны. Насколько мы сегодня знаем, теория фотонов представляет собой самое фундаментальное и верное описание света — потока частиц, которые могут приобретать волновые свойства. В настоящее время базисное описание того, что представляет собой свет и как он себя ведет, дает квантовая механика. Эта теория фундаментально верна и останется в науке.
В настоящее время квантовая механика находится гораздо ближе к передовым областям научных исследований, нежели оптика. Если кто‑то по–прежнему думает о новых открытиях в оптике, то имеет в виду в первую очередь новые эффекты, возможные только в рамках квантовой механики. Современная наука уже не развивает классическую оптику, но, безусловно, включает в себя квантовую оптику, науку о квантово–механических свойствах света. Лазеры работают по законам квантовой механики; то же можно сказать и о детекторах света, таких как фотоумножители, и о фотоэлементах, превращающих солнечный свет в электричество.
Современная физика элементарных частиц включает в себя также теорию квантовой электродинамики (КЭД), разработанную Ричардом Фейнманом и другими учеными. В нее входят не только квантовая механика, но и специальная теория относительности. В КЭД мы занимаемся изучением отдельных частиц, в том числе фотонов — частиц света, а также электронов и других частиц, переносящих электрический заряд. Мы способны разобраться в скоростях, на которых взаимодействуют эти частицы и с которыми они могут создаваться и уничтожаться. КЭД — одна из тех теорий, которые очень активно используются в физике элементарных частиц. Кроме того, именно в ее рамках делаются самые достоверные научные предсказания. КЭД совершенно не похожа на геометрическую оптику, но обе эти теории верны, каждая в соответствующей области.
В каждой области физики имеется своя эффективная теория. По мере развития науки старые идеи уходят на второй план и становятся составной частью более фундаментальных теорий. Но передовые исследования в науке посвящены не им. В конце этой главы мы рассмотрели конкретный пример — развитие физических представлений о природе света, но следует отметить, что таким образом развивается вся физика. На передовом крае науки развитие происходит неуверенно, но в целом методично. Эффективные теории в каждом конкретном масштабе игнорируют, как им и положено, те эффекты, которые не влияют ни на какие измерения. Знания и методы, обретенные в прошлом, остаются с нами, но, по мере того как мы начинаем осваивать более широкий спектр расстояний и энергий, теории получают новое развитие. Движение вперед позволяет нам разобраться в фундаментальной основе наблюдаемых явлений.
Понимание исторического пути развития науки помогает лучше понять ее природу и по достоинству оценить крупнейшие вопросы, которыми заняты сегодня физики (и другие ученые). В следующей главе мы увидим, что сегодняшние научные методы зародились еще в XVII в.