Читаем Древняя Тайна Цветка Жизни. Том 1 полностью

Это маленькое растение (Рис.8-2) на самом деле не существует; мы создали его с помощью компьютерной графики, тасуя данные, как колоду карт. Подлинное растение, на котором основана эта иллюстрация, называется трава-чихун (тысячелистник птармика); мы просто составили на компьютере графическое изображение этого растения.

Фибоначчи заметил, что когда росток травы-чихун только появляется из земли, на нём вырастает только один лист, всего один маленький листик. Затем он немного вытягивается, и на стебле вырастает ещё один листок, потом немного дальше у него вырастает два листа, потом три, затем пять и затем – восемь; после этого он выбрасывает тринадцать соцветий. Вероятно, он подумал: «Эй, это те же самые числа, которые я вижу всюду в лепестках у других цветов – 3, 5, 8, 13.»

В конце концов, эта последовательность из чисел 1, 1, 2, 5, 8, 13, 21, 34, 55, 89 и так далее стала известна как последовательность Фибоначчи. Если вам известны любые три последующих числа из этой последовательности, то вы можете распознать всю закономерность: остаётся лишь сложить два последовательных числа, чтобы получить число, следующее за ними. Видите, как это работает? Это совершенно особенная последовательность. В жизни она является решающей. Пожалуй, это будет моей интерпретацией пояснения причины, по которой она является ключевой, но я изо всех сил постараюсь вам показать.



Это – пятилепестковый цветок гибискуса (Рис.8-3). Тычинка внутри оканчивается пятью почками, и направление этих двух геометрических форм противоположно друг относительно друга, одна группа устремлена вверх, другая направлена вниз. Большинство людей, глядя на этот цветок, не думают: «Гляди-ка, у него пять лепестков». Они просто смотрят на него, замечают его красоту, нюхают его и воспринимают его правым полушарием своего мозга. Они не думают о геометрии или метаматике – о том, что происходит на другой стороне мозга.


Как жизнь разрешила вопрос бесконечной спирали Золотого Сечения (Ф)


Помните, я сказал, что спираль Золотого Сечения не имеет ни начала, ни конца, и что у жизни возникли с этим большие проблемы? С отсутствием конца она ещё может иметь дело, но совсем не просто сладить с чем-то, не имеющим начала. Мне действительно трудно с этим сладить и я думаю, с этой ситуацией мы боремся все.

Чтобы обойти эту проблему, природа создала последовательность Фибоначчи. Это подобно тому, как если бы Бог сказал: «Окей, ступайте и творите по спирали Золотого Сечения», а мы возразили: «Мы не умеем». И тогда мы создали нечто, не являющееся спиралью Золотой Середины, но так быстро к ней приближающееся, что отличие становится едва различимо



Например, пропорция Ф, связанная с Золотым Сечением, приблизительно равна 1,6180339. Смотрите, что происходит, когда вы делите каждое число в последовательности Фибоначчи на последующее. В левой колонке дана последовательность: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. В следующей колонке я сдвинул последовательность на одно число, так, чтобы мы могли на одной строчке разделить число в первой колонке на число во второй колонке (см. колонку 3). Обратите внимание, что происходит, когда вы делите число из первой колонки на число из второй колонки. При делении 1 на 1 мы получаем 1,0. Теперь: 1,0 значительно меньшепропорции Ф. Но перейдя на следующую строчку, и разделив 2 на 1, мы получаем 2, что больше Ф, но ближе к нему, чем 1. Разделив 3 на 2, мы имеем 1,5 что значительно ближе к Ф, нежели предыдущие два результата, но этого ещё мало. 5 поделенное на три даёт результат 1,6666, что больше искомого, но к нему значительно ближе. 8, поделенное на 5, даст 1,60 – это меньше Ф. Поделенное на восемь 13 даёт 1,625, это больше. Поделив 21 на тринадцать, получаем 1,615 – меньше. Разделив 34 на 21, получаем 1,619, что – больше. Разделив 55 на 4, получаем 1,617 – меньше. Поделим 89 на пятьдесят пять, это будет 1,6181 – больше. Следующий результат будет немного меньше, потом будет больше, и так каждый раз, приближаясь всё ближе и ближе к действительной пропорции Ф. Это называется асимптотическим приближением к пределу. Достичь самого числа вообще никогда невозможно, но и заметить разницу после нескольких делений тоже становится практически невозможно. Графически это можно увидеть на Рис.8-5.



Светлосерые квадраты – это четыре центральных квадрата тела человека, где расположены восемь первоначальных клеток. Восемь тёмносерых квадратов вокруг этих центральных квадратов – это те, где начинаются спирали. Все в этом разобрались?

Вместо того, чтобы позволить спирали бесконечно закручиваться, мы поступим иначе – потому что, на мой взгляд, так поступает жизнь. В качестве исходной точки я воспользуюсь одним из внешних квадратов, и это будет справедливо для всех восьми квадратов. Я выбираю один из них в качестве примера.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже