Воспльзовавшись диагональю, проведенной через всего лишь один крошечный квадрат фона, как меркой, назовём эту линию диагонали одной единицей. Затем будем двигаться в соответствии с числами Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 89, совершая поворот откладываемой линии после каждого числа на 90°. Сначала мы откладываем одну длину, затем поворачиваемся на 90° и откладываем ещё одну длину. Потом делаем поворот на 90° и продвигаемся на две длины, следующий поворот на 90° и -продвижение по прямой на три длины. Перед каждым продвижением мы совершаем поворот на 90°. Следующий шаг имеет длину в 5 единиц, потом следует 8. Таким образом мы получаем отрезки длиной 1, 1, 2, 3, 5, 8, 13.
Затем мы пересекаем по диагонали 21 квадрат, а потом 34 (Рис.8-6). Потом следуют 55 и 89 (Рис.8-7) Проделывая это, спираль разворачивается и всё ближе и ближе подходит к Ф, спирали Золотого Сечения, до тех пор, пока в жизни становится уже практически невозможно определить разницу, по крайней мере визуально.
Сравнение двух спиралей должно быть очень важным действием при изучении жизни, потому что древние Египтяне показали в Великой Пирамиде как спираль Фибоначчи, так и спираль Золотого Сечения. Несмотря на то, что эти спирали имеют два различных источника, к тому моменту, как они достигают ступеней 55 и 89, две их линии становятся практически идентичными. Когда люди, изучавшие Египет, увидели, что три пирамиды выстроены по спирали, они подумали, что это спираль Золотого Сечения, а не спираль Фибоначчи. Затем они вернулись и обнаружили одну из ямок (см. Главу 4, подзаголовок
Вот священная геометрия в природе (Рис.8-8), подлинное явление. Это срез раковины моллюска наутилуса. Существует неписаное правило, что каждая хорошая книга по священной геометрии должна содержать в себе раковину наутилуса. Многие книги утверждают, что это спираль Золотого Сечения, но это не так – это спираль Фибоначчи.
Можно увидеть совершенство рукавов спирали, но если посмотреть в центр или начало, то она не выглядит так идеально. Здесь эта деталь действительно неразличима. Я предлагаю вам рассмотреть подлинник. В дествительности, внутренний конец спирали выходит на другую сторону и изгибается коленом, потому что его длина равна 1, что очень далеко от Ф. Второе и третьее колено тоже изгибаются, но не настолько, потому что они больше приближены к Ф. Затем соответствие становится всё большим и большим, до тех пор, пока вы не увидите, как эта изящная форма разворачивается. Вы могли бы решить, что этот маленький наутилус в начале совершил ошибку; кажется, будто там он ещё не знал, что он делает. Но он выстроил всё идеально, без ошибок. Он просто точно следовал математике последовательности Фибоначчи.
На этой сосновой шишке (Рис.8-9) вы видите двойную спираль, одна движется в одном, а другая в другом направлении. Если бы вы посчитали число витков спирали, вращающейся в одном направлении, а затем – в другом, то обнаружили бы, что это будут всегда два последовательных числа Фибоначчи. Возможно, это 8 оборотов в одном направлении и 13 в другом, или 13 в одном направлении, и 21 – в другом. Многие другие двуспиральные модели, находимые всюду в природе, соответствуют этому закону во всех известных мне случаях. Например, спирали подсолнуха всегда привязаны к последовательности Фибоначчи.
Рис. 8-10 показывает различие между двумя спиралями. Спираль Золотого Сечения идеальна. Она подобна Богу, Источнику. Как видите, верхние четыре квадрата на обоих рисунках -одинакового размера. Различие – в областях, где они получают начало (нижние отделы двух диаграмм). Область нижней части спирали Фибоначчи равна половине (0,5) области её верхней части; область нижней части спирали Золотого Сечения равна 0,618 области её верхней части. Спираль Фибоначчи, показанная на Рис.8-10 выстроена при помощи шести равных квадратов, в то время как спираль Золотого Сечения начинается глубже внутри (в действительности, она вообще никогда не начинается – она длится вечно, как Бог). Хотя исходные точки спиралей различны, их линии начинают очень быстро сближаться.
Другой пример: множество книг утверждает, что Царская Палата представляет собой прямоугольник Золотого Сечения, но это не так. Это опять связано с Фибоначчи.
Начертив сетку в 64 клетки и объединив эту спиральную модель, мы получаем Рис.8-11.