Читаем Думай медленно... решай быстро полностью

Другая причина того, что эксперты проигрывают формулам, – непростительное непостоянство человеческих обобщений при обработке сложной информации. Если предоставить экспертам один и тот же набор данных дважды, они часто дают разные ответы. Степень этого непостоянства вызывает серьезную тревогу. Опытные радиологи, оценивая рентгенограммы грудной клетки (норма или патология), противоречат себе в 20% случаях, когда повторно видят одни и те же снимки. Опрос 101 независимого аудитора, которым предложили определить надежность внутрикорпоративных аудиторских проверок, выявил равную долю противоречий. Обзор 41 исследования о надежности суждений, высказанных аудиторами, патологами, психологами, менеджерами и прочими специалистами, позволяет предположить, что такая частота противоречий типична для всех случаев, даже если повторная оценка материала проводилась спустя всего несколько минут. Ненадежные оценки не могут привести к точным предсказаниям.

Возможно, непостоянство суждений столь широко распространено из-за крайней зависимости Системы 1 от контекста. Исследования в области прайминга показывают, что незамеченные воздействия окружающей среды сильно влияют на наши мысли и действия. Эти влияния поминутно меняются. Приятная прохлада ветерка в жаркий день может настроить вас на оптимистичный лад и сказаться на вашем мнении в данный момент. Шансы преступника на досрочное освобождение сильно колеблются в соответствии с графиком работы судей (между перерывами на еду). Люди редко осознают напрямую, что происходит у них в головах, а потому не догадываются, что даже самые незначительные обстоятельства способны радикально изменить их решение. Формулы, напротив, не подвержены влиянию обстоятельств. При одних и тех же данных они всегда выдают один и тот же ответ. Когда предсказуемость низка (как в большинстве исследований, изученных Милом и его последователями), непостоянство уничтожает прогностическую значимость.

Данные исследования подводят нас к неожиданному выводу: для максимального повышения прогностической точности конечные решения следует доверить формулам, особенно в «малодостоверных» областях. Например, при поступлении в медицинские вузы последнее решение оставляется за преподавателями, проводящими собеседование с абитуриентами. Немногочисленные свидетельства позволяют предположить, что проведение собеседования, скорее всего, снижает точность процедуры отбора, поскольку интервьюеры обычно излишне уверены в собственной интуиции и слишком часто полагаются на собственные наблюдения, не обращая внимания на другие источники информации. Аналогичным образом эксперты по оценке качества незрелого вина получают данные, которые скорее ухудшают, чем улучшают точность прогноза по поводу его будущей стоимости, – им позволяют дегустировать вино. Даже отдавая себе отчет, что качество вин прежде всего зависит от погоды, эксперты не могут соперничать с формулой в постоянстве выводов.

Наиглавнейшим достижением в этой области науки после работы Мила можно считать знаменитую статью Робина Доуза «Грубая красота неточных линейных моделей, используемых в принятии решений». В общественных науках преобладает статистическая практика приписывать вес каждому из элементов предсказания (предиктору), следуя алгоритму, называемому множественной регрессией. В наше время этот алгоритм встраивают в типовое программное обеспечение. Логику множественной регрессии невозможно опровергнуть: она находит оптимальную формулу для совмещения взвешенной комбинации предикторов. Однако Доуз обнаружил, что сложность статистического алгоритма почти не повышает его эффективности. С равным успехом можно выбрать несколько показателей, обладающих некоторой значимостью для предсказания результата, и подогнать их значения для сравнимости по стандартным позициям. Формула, соединяющая предикторы с равными весами, была бы настолько же точна в предсказании новых случаев, как и формула множественной регрессии, оптимальная для изначальной выборки. Новейшие исследования пошли еще дальше: согласно им, формулы, придающие равный вес всем предикторам, часто превосходят другие, поскольку на них не влияют случайности, возникающие при составлении выборки.

Поразительный успех равновесных схем имеет важное практическое значение: стало возможно разрабатывать полезные алгоритмы без предварительных статистических исследований. Хорошо предсказывают значимые результаты простые равновесные формулы, основанные на существующей статистике или здравом смысле. В одном запоминающемся примере Доуз показал, что устойчивость брака предсказывается формулой:

частота занятий любовью минус частота ссор

Хорошо, если результат будет величиной положительной.

Важный вывод данного исследования состоит в том, что алгоритм, сочиненный «на коленке», по результативности часто соперничает с оптимально взвешенной формулой и с легкостью превосходит прогноз эксперта. Это правило применимо ко многим областям, будь то выбор акций для инвестиционного портфеля или выбор метода лечения врачами или пациентами.

Перейти на страницу:

Похожие книги

Психология и психотерапия семьи
Психология и психотерапия семьи

Четвертое издание монографии (предыдущие вышли в 1990, 1999, 2001 гг.) переработано и дополнено. В книге освещены основные психологические механизмы функционирования семьи – действие вертикальных и горизонтальных стрессоров, динамика семьи, структура семейных ролей, коммуникации в семье. Приведен обзор основных направлений и школ семейной психотерапии – психоаналитической, системной, конструктивной и других. Впервые авторами изложена оригинальная концепция «патологизирующего семейного наследования». Особый интерес представляют психологические методы исследования семьи, многие из которых разработаны авторами.Издание предназначено для психологов, психотерапевтов и представителей смежных специальностей.

Виктор Викторович Юстицкис , В. Юстицкис , Эдмонд Эйдемиллер

Психология и психотерапия / Психология / Образование и наука