Если отвечать на это коротко, то схема не работает в моделях, включающих взаимодействия переменных (иногда говорят «модерацию»). Представим, что некое лекарственное средство стимулирует организм выдел ять фермент, который действует как катализатор: он соединяется с этим лекарственным средством и лечит болезнь. Суммарный эффект этого препарата будет, конечно же, положительным. Однако прямой его эффект равен нулю, потому что, если мы заблокируем медиатор (например, не давая организму выделять фермент), препарат не подействует. Непрямой эффект также равен нулю, потому что, если пациент не будет получать препарат, а начнет принимать искусственно синтезированный фермент, болезнь тоже не пройдет. Сам по себе фермент не излечивает болезнь. Таким образом, уравнение (9.4) не выполняется: суммарное воздействие положительное, но и прямое, и непрямое воздействия равны нулю.
Тем не менее уравнение (9.4) выполняется автоматически в одной ситуации без необходимости ввода контрафактивных переменных. Это случай линейной каузальной модели, вроде той, которую мы рассматривали в главе 8. Как обсуждалось там, линейные модели не допускают взаимонаправленных взаимодействий между переменными, и это может быть как преимуществом, так и недостатком. Преимуществом в том смысле, что анализ опосредования становится намного проще, а недостатком — если мы захотим описать некий каузальный процесс в реальном мире, в котором такие взаимодействия все-таки присутствуют.
Поскольку анализ опосредования намного проще для линейных моделей, посмотрим, как он осуществляется, и с чем вероятны проблемы. Допустим, у нас есть каузальная диаграмма, выглядящая как рис. 59. Поскольку мы работаем с линейной моделью, мы можем представить силу каждого воздействия одним числом. Метки (путевые коэффициенты) показывают, что увеличение переменной
Каково же будет суммарное воздействие интервенции, благодаря которой экспериментальное воздействие увеличится на 1 единицу? Во-первых, эта интервенция напрямую вынуждает итог увеличиться на 7 единиц (если мы удерживаем медиатор на постоянном уровне). Она также увеличивает медиатор на 2 единицы. Наконец, поскольку каждое увеличение медиатора на 1 единицу напрямую вызывает увеличение итога на 3 единицы, увеличение медиатора на 2 единицы приведет к дополнительному увеличению итога на 6 единиц. Поэтому суммарное увеличение итога по обоим каузальным путям будет составлять 13 единиц. Первые 7 единиц соответствуют прямому воздействию, а оставшиеся 6 — непрямому воздействию. Проще пареной репы!
Рис. 59. Пример линейной модели (путевая диаграмма) с опосредующей переменной
Итак, если имеется более одного непрямого пути от
В 1986 году Рубен Барон и Дэвид Кенни сформулировали набор принципов для обнаружения и оценки опосредования в системе уравнений. Основные принципы заключаются, во-первых, в том, что все переменные связаны линейными уравнениями, которые оцениваются путем подбора их в соответствии с данными. Во-вторых, прямые и непрямые воздействия исчисляются путем подбора двух уравнений, соответствующих данным: одного с опосредующей переменной и другого без нее. Значительное изменение коэффициентов в случае, когда вводится опосредующая переменная, считается доказательством наличия опосредования.
Простота и убедительность метода Барона — Кенни снискала ему заслуженные лавры в среде общественных наук. В 2014 году их статья занимала 33-е место сверху в списке самых цитируемых работ за всю историю. Их цитировали чаще, чем Альберта Эйнштейна, чаще, чем Зигмунда Фрейда, чаще почти любого другого ученого, которого только можно вспомнить. Их статья стоит на втором месте среди всех публикаций по психологии и психиатрии, хотя она совсем не о психологии. Она о некаузальном опосредовании.