Роль, которую в этой процедуре играет критерий черного хода, — это гарантия, что каузальный эффект в каждой страте переменной, снимающей осложнения, не что иное, как наблюдаемый в этой страте тренд. Таким образом, каузальный эффект можно вывести из данных по частям, страта за стратой. В отсутствие критерия черного хода у исследователей нет гарантии, что поправки оправданы.
Пример с вымышленным лекарством в главе 6 — самая простая из возможных ситуаций: одна экспериментальная переменная (лекарство
Однако во многих случаях переменные
Очевидное решение — распределить численные значения переменной по конечному и удобному в использовании числу категорий. В таком решении нет ничего принципиально неправильного, однако выбор числа категорий оказывается несколько произвольным. Намного хуже, когда переменных, по которым вводятся поправки, оказывается достаточно много, число категорий растет по экспоненте, что делает исчисление по этой процедуре затруднительным; еще хуже, что во многих стратах при этом нет ни одного образца и они не могут, таким образом, дать оценку вероятности.
Статистики изобрели хитроумные методы избавления от этой проблемы «проклятья множественных измерений». В большинстве из них в том или ином виде применяется экстраполяция, когда для данных подбирается соответствующая им гладкая функция, с помощью которой закрываются дыры, оставленные пустыми стратами.