Тот факт, что в приведенных двух случаях мы это сделали (черный ход и парадный вход), немедленно поднимает вопрос, существуют ли другие входы и выходы, через которые устраняются все
Перспектива принятия таких решений на основе чисто математических средств должна показаться заманчивой любому, кто понимает дороговизну и сложность проведения рандомизированных контролируемых исследований даже в тех случаях, когда они возможны с точки зрения физики и законодательства. Я тоже был вдохновлен этой идеей в начале 1990-х, не как экспериментатор, а как ученый в области информатики и заодно философ. Несомненно, одно из самых радостных событий в жизни ученого — обнаружить, что, не выходя из-за своего стола, вы способны определить, что возможно или невозможно в реальном мире — особенно, если решаемая проблема важна для общества, а тех, кто пытался ее решить до вас, она ставила в тупик. Могу себе представить, что нечто подобное испытывал Гиппарх из Никеи, когда обнаружил, что в состоянии вычислить высоту пирамиды по ее тени на земле, не взбираясь на нее. Это была явная победа разума над материей.
В самом деле, используемый мной подход во многом был вдохновлен учеными Древней Греции (включая Гиппарха) и изобретенной ими формальной логикой геометрии. В центре древнегреческой логики — набор аксиом, или самоочевидных истин, допустим: «Между двумя точками можно провести одну и только одну прямую». С помощью этих аксиом древним грекам удалось создать сложные структурированные утверждения — теоремы, истинность которых уже очень далека от очевидной. Возьмем, к примеру, утверждение, что сумма углов треугольника равна 180° (или двум прямым углам) вне зависимости от его размера и формы. Истинность этого утверждения ни в какой мере не очевидна; однако философы-пифагорейцы V века до н. э. сумели доказать его универсальную истинность, используя самоочевидные аксиомы в качестве деталей конструктора.
Если вы постараетесь вспомнить школьные уроки геометрии, хотя бы в первом приближении, вы вспомните, что доказательства теорем всегда состоят из вспомогательных построений: скажем, прямой, параллельной стороне треугольника, отмечающей равенство определенных углов; окружности с радиусом, равным данному сегменту, и т. д. Эти вспомогательные построения рассматриваются как временные математические предложения, которые содержат допущения (или требования), касающиеся свойств изображенных фигур. Каждое новое построение опирается на уже существующие, так же как и на аксиомы и на ранее доказанные теоремы. Например, начертание прямой, параллельной одной из сторон треугольника, определяется пятой аксиомой Евклида, о том, что возможно провести одну и только одну прямую, параллельную данной прямой через точку, не лежащую на этой прямой. Начертание этих вспомогательных конструкций — всего лишь операция механического манипулирования символами: в ходе него предложение, написанное ранее (или ранее начертанное изображение), переписывается в новом формате, если это переписывание допускается аксиомой. Великая заслуга Евклида в том, что он определил минимальный набор из всего пяти аксиом, из которого возможно вывести все остальные истинные утверждения геометрии.
Теперь давайте вернемся к нашему центральному вопросу: в каких случаях модель может заменить эксперимент или когда данные, полученные в результате действия, можно заменить просто наблюдаемыми данными. Вдохновившись геометрами Древней Греции, мы хотели бы свести задачу к манипуляции символами и таким образом свергнуть причинность с Олимпа и сделать ее доступной обычному исследователю.
Для начала перефразируем задачу нахождения воздействия