Читаем Душевные смуты воспитанника Тёрлеса полностью

— Молчи! — крикнул Райтинг. — Надоели нам твои увертки! Теперь мы узнали раз и навсегда, чего от тебя можно ждать, и поступать будем соответственно…

Наступило короткое молчание. Вдруг Тёрлес тихо, почти ласково сказал:

— Скажи-ка: «Я вор».

Базини сделал большие, почти испуганные глаза; Байнеберг одобрительно засмеялся.

Но Базини молчал. Тогда Байнеберг толкнул его в бок и прикрикнул на него:

— Не слышишь, что ли, ты должен сказать, что ты вор! Говори сейчас же!

Снова наступила короткая, почти мгновенная тишина; затем Базини тихо, одним духом и как можно более безобидным тоном сказал:

— Я вор.

Байнеберг и Райтинг довольно засмеялись, глядя на Тёрлеса.

— Это ты хорошо придумал, малыш. И обратились к Базини:

— А теперь ты скажешь еще: я скотина, я вор и скотина, я ваша скотина, вор и свинья.

И Базини сказал это не переводя дыхания и с закрытыми глазами.

Но Тёрлес уже опять откинулся в темноту. Ему было тошно от этой сцены и стыдно, что он выдал другим пришедшее ему в голову.

На занятиях по математике Тёрлеса вдруг осенила одна мысль.

В последние дни он слушал уроки в школе с особым интересом, ибо про себя думал: «Если это действительно подготовка к жизни, как они говорят, то значит, тут должен найтись и какой-то намек на то, чего я ищу».

При этом он думал именно о математике; еще со времени тех мыслей о бесконечности.

И в самом деле, среди занятий его вдруг озарило. Сразу после окончания урока он подсел к Байнебергу — единственному, с кем он мог говорить о подобных вещах.

— Слушай, ты это вполне понял? — Что?

— Эту историю с мнимыми числами?

— Да. Это же совсем не так трудно. Надо только запомнить, что квадратный корень из минус единицы — это еще одна величина при вычислении.

— Но вот в том-то и дело. Такого же не существует. Любое число, положительное или отрицательное, дает в квадрате что-то положительное. Поэтому не может быть в действительности числа, которое было бы квадратным корнем из чего-то отрицательного.

— Совершенно верно. Но почему бы, несмотря на это, не попытаться произвести извлечение квадратного корня и при отрицательном числе? Конечно, это не может дать никакой действительной величины, но потому-то и называют такой результат мнимым. Это все равно как сказать: здесь вообще всегда кто-то сидел, поставим и сегодня стул для него. И даже если он тем временем умер, сделаем вид, будто он придет.

— Но как же так, если точно, с математической точностью знаешь, что это невозможно.

— Вот и делают вид, будто это не так. Видимо, какой-то толк от этого есть. А разве иначе обстоит дело с иррациональными числами? Деление, которое никогда не кончается, дробь, величину которой нельзя вычислить, сколько бы долго ты ни считал? А как ты можешь представить себе, что параллельные линии пересекаются в бесконечности? Я думаю, если бы мы были чересчур добросовестны, то математики не было бы на свете.

— В этом ты прав. Если все так и представлять себе, то получается и правда довольно странно. Но этот-то и Удивительно, что с этими мнимыми или еще какими-либо невозможными величинами можно действительно производить вычисления, дающие осязаемый результат!

— Только эти мнимые факторы должны в ходе вычисления взаимно уничтожаться.

— Да, да. Все, что ты говоришь, я знаю. Но не остается ли, несмотря ни на что, во всем этом что-то необыкновенное? Как бы объяснить это тебе? Задумайся только: сначала в таком вычислении идут вполне солидные числа, представляющие собой метры, или вес, или еще что-нибудь ощутимое и хотя бы являющиеся действительно числами. В конце вычисления числа такие же. Но те и другие связаны между собой чем-то, чего вообще нет. Не похоже ли это на мост, от которого остались только опоры в начале и в конце и который все же переходишь так уверенно, словно он весь налицо? Для меня в таком вычислении есть что-то головокружительное. Словно часть пути заходит бог весть куда. Но самое жуткое, по-моему, — сила, которая скрыта в таком вычислении и держит тебя так крепко, что ты все-таки попадаешь туда, куда нужно.

Байнеберг ухмыльнулся.

— Ты говоришь уже почти совсем как наш поп: «Ты видишь яблоко… это колебания света, а глаза и так далее… и ты протягиваешь руку, чтобы украсть его… это мышцы и нервы приводят ее в движение… Но между тем и другим есть что-то, что рождает одно из другого… а это бессмертная душа, которая согрешила сейчас… да… да… ни одного вашего действия нельзя объяснить без души, она играет вами, как фортепианными клавишами…» — И он передразнил интонацию, с какой преподаватель катехизиса рассказывал эту старую притчу.

— Впрочем, вся эта история мало интересует меня.

— Я думал, как раз тебя она должна интересовать. Я, во всяком случае, сразу подумал о тебе, потому что это — если это действительно так необъяснимо — почти подтверждение твоей веры.

Перейти на страницу:

Похожие книги