Если мы задумаемся, то увидим, что логарифм основания всегда равен 1, и это его основополагающее свойство.
Самые распространенные основания — это а = 10,а = 2 и а- = е. Логарифмы по основанию 10 называются десятичными, по основанию 2 — двоичными, по основанию е — натуральными. Для натуральных логарифмов используется знак InN вместо log N.
Важным аспектом логарифма является то, что с его помощью упрощаются арифметические вычисления. Например:
Ν1 · Ν2 = aL1 · aL2 = aL1+L2
⇒ loga(N1 · N2) = L1 + L2 = logaN1 + logaN2.
Таким образом, логарифм произведения равен сумме логарифмов его множителей.
Если мы сделаем таблицу с двумя величинами, числами и десятичными логарифмами, то сможем сложить логарифмы и при помощи таблиц легко узнать произведение. И хотя сегодня можно без труда произвести умножение электронными калькуляторами, во времена, когда они еще не существовали, операция, помогающая заменить сложные расчеты в случаях произведений больших величин на простое сложение, имела огромное практическое значение.
Проследим за хитроумными рассуждениями Эйлера, но не будем забывать, что в некоторых местах они должны быть доработаны. Позже это сделал сам ученый. Возьмем знаменитый ряд Тейлора:
sinx = x - x3/3! + x5/5! - x7/7! + ...
Мы знаем, что он равен нулю при х равном нулю, то есть если sinx = 0, когда х = 0, ± π, ±2π, ±3π...
Следовательно, предположив, что ряд ведет себя как многочлен, поскольку он и является длиннейшим многочленом, применение фундаментальной теоремы алгебры преобразит его в произведение одночленов вида х - α, где α — решение. Продолжим:
x - x3/3! + x5/5! - x7/7! + ... = K(x)(x - π)(x + π)(x - 2π)(x + 2π)...
К — неизвестная константа. Производя вычисления в правой части равенства:
x - x3/3! + x5/5! - x7/7! + ... = K(x)(x2 - π2)(x2 - 4π2)(x - 9π2)...
следует отметить, что каждый член вида х2 - λ2π2 справа равен нулю. А это происходит, только если
1 - х2/(λ2π2) = 0.
Запишем члены правого выражения в следующей форме:
x - x3/3! + x5/5! - x7/7! + ... = K(x)(1 - x2/π2)(1 - x2/4π2)(1 - x2/9π2)...
Теперь разделим на x:
sinx/x = 1 - x2/3! + x4/5! - x6/7! + ... = K(1 - x2/π2)(1 - x2/4π2)(1 - x2/9π2)...
И, поскольку limx→0(sinx/x) = 1, получим, что K = 1. Итак:
1 - x2/3! + x4/5! - x6/7! + ... = (1 - x2/π2)(1 - x2/4π2)(1 - x2/9π2)...
Этот ряд равен бесконечному произведению. Для Эйлера это не проблема. Подсчитаем порядок произведения и выделим члены произведения с x2 в правой части:
- x2/3! = -x2/π2 - x2/4π2 - x2/9π2 - ...
Разделив обе части на -x2/π2, получим
π2/6 = 1+ 1/22 + 1/23 + 1/42 + ...,
что и требовалось доказать.
Эйлер был первым математиком, доказавшим тождественность ζ($) как ряда степеней и ζ($) как бесконечного произведения. Назовем рк простое число, занимающее место k в ряде. Получим
Чтобы упростить, насколько это возможно, наше объяснение, оттолкнемся от предположения, что задействованные в нем функции удовлетворяют всем необходимым условиям на производную и непрерывность.
Обозначим через S функционал (функцию функций), к которому мы применим вариационное исчисление, а через x1, х2 — экстремумы неизвестной функции:
S(ƒ) = ∫x1x2L(x1,ƒ(x),ƒ'(x))dx.
Предположим, что решением является ƒ0 и что функционал имеет здесь минимум; назовем α(x) функцию (которую мы будем "варьировать"), равную нулю в экстремумах x1, х2. Поскольку в ƒ0 функционал имеет минимум,
S(ƒ0)≤S(ƒ0+εα)
в окрестности ƒ0. Вариационный размах
ƒ = ƒ0 + εα
должен удовлетворять:
dS(ƒ0 + εα)/dε|ε=0 = ∫x1x2dL/dε|ε=0 = 0
Теперь вспомним, что
dƒ/dε = α,dƒ'/dε = α'.
Применим правило дифференцирования и проведем необходимые замены.
Получим
dL/dε = ∂L/∂ƒ dƒ/dε + ∂L/∂ƒ' dƒ'/dε = (∂L/∂ƒ)α + ∂L/∂ƒ'α'
A теперь проинтегрируем по частям и учтем предыдущую формулу:
dL/dƒ = d/dx ∂L/dƒ' = 0
Таким образом, мы получили уравнения Эйлера — Лагранжа, которые в приложениях обычно приводят к дифференциальным уравнениям второго порядка.
5. КОМПЛЕКСНЫЕ ЧИСЛА
Эйлер вывел свою фундаментальную формулу, из которой впоследствии получил еще несколько из простых рядов Тейлора. Напомним, что степени ведут себя так:
i0 = 1,i1 = i,i2 = -1,i3 = -i,