Для того чтобы понять, почему привязка к MR = МС
максимизирует прибыль, давайте вернемся к табл. 10.1, приведенной ранее в этой главе, и рассмотрим каждую единицу продукции, q, для которой справедливо неравенство q < 440. Для всех этих единиц предельный доход будет больше предельной себестоимости (MR > МС), что значит: доходы от продажи каждой из этих бутылок превысят затраты на их производство. Например, давайте возьмем бутылку под номером 140. Ее предельная себестоимость составляет всего 0,89 долл., но ее можно продать за 2,00 долл. Понятно, что вам нужно произвести эту бутылку, поскольку от ее продажи вы получите больше денег, чем было затрачено на ее производство. Это утверждение справедливо для всех остальных бутылок, где q < 440; вам нужно производить их, потому что все они принесут вам прибыль.С другой стороны, для всех единиц, превышающих уровень продукта q* (q > 440),
справедливо обратное: предельный доход меньше предельной себестоимости (MR < МС).Вы потеряете деньги, если вы произведете и продадите эти бутылки. Например, на уровне продукта в 470 бутылок, МС
составит 2,67 долл., тогда как MR составляет всего 2,00 долл. Если вы произвели продукт на этом уровне, то на бутылке под номером 470 вы потеряете 67 центов. Ясно, что вам не захочется в этом участвовать.Сравнивая предельный доход и предельные издержки на всех уровнях продукта, вы можете видеть, что менеджеры корпорации LemonAid
хотят производить точно q* = 440 единиц — то количество единиц, при котором линии MR и МС пересекаются.Как я упоминал во введении к этому разделу, производство, где MR
= МС, не гарантирует вам прибыли, но оно хотя бы гарантирует, что вы производите бутылки, приносящие больше денег, чем было потрачено на их производство. Причина, по которой эта формула сама по себе не может гарантировать прибыль, заключена в том, что она не принимает в расчет фиксированные издержки, которые вам нужно платить безотносительно уровня продукта, который вы производите. Даже если вы производите бутылки, чей предельный доход по крайней мере равен предельной себестоимости, вы все еще можете не получить достаточно выручки для оплаты ващих фиксированных издержек.Визуализация прибыли
Из предыдущего раздела мы узнали следующее.
Фирма может определить оптимальный уровень своего продукта, q*,
исходя из равенства MR = МС.Производство на уровне q*
не гарантирует прибыль — вместо этого оно гарантирует, что вы получите максимально возможную прибыль (если возможно получить прибыль) или минимально возможные убытки (если цены будут настолько низкими, что невозможно получить прибыль при данной структуре издержек).А сейчас я собираюсь вам продемонстрировать быстрый и легкий способ использования кривых затрат для определения того, получает фирма прибыль или несет убытки.
Фокус заключается в том, чтобы осознать, что две составляющих прибыли, совокупный доход (TR
) и совокупные издержки (ТС), могут быть представлены прямоугольниками, площади которых будут равны соответствующим величинам. В результате вы можете сразу же сказать, положительная или отрицательная у вас прибыль, если посмотрите, будет ли прямоугольник TR больше прямоугольника ТС. Если прямоугольник TR превышает размер прямоугольника ТС, прибыль положительная. А если прямоугольник TR меньше прямоугольника ТС, прибыль отрицательная — фирма терпит убытки.Для того чтобы увидеть, как это работает, взгляните на рис. 10.4, где я нарисовал кривые средних совокупных издержек (АТС),
средних переменных издержек (AVC) и предельных издержек (МС), а также горизонтальную линию, обозначенную р = MR, указывающую на равенство цены и предельного дохода для этой фирмы, работающей в условиях конкуренции. (Здесь изображен типичный вид этих кривых; мы больше не используем конкретные кривые, которые получились у нас в результате исследований затрат корпорации LemonAid.)
Помимо того, что совокупный доход может быть изображен в виде прямоугольника, вам нужно запомнить, что совокупный доход фирмы, когда ее производительность находится на уровне продукта q*,
позволяющем максимизировать прибыль, — это просто цена, умноженная на количество единиц продукта, или TR = р*q*. Точно так же, как мы определяем площадь прямоугольной комнаты, умножая ее длину на ширину, величина совокупного дохода определяется как произведение цены на количество. На рис. 10.4 TR — это прямоугольник с высотой р и шириной q*. Его углы обозначены началом системы координат, точкой р на вертикальной оси, точкой, где линия р — MR пересекает кривую МС, и точкой q* на горизонтальной оси.