Если оставить в стороне эстетическое совершенство, конечным подтверждением справедливости физической теории является ее способность объяснять и точно предсказывать физические явления. Теория гравитации Ньютона блестяще выдерживала это испытание с момента ее появления в конце XVII в. и до начала XX столетия. Применительно к подбрасываемым в воздух мячам, телам, падающим с наклонных башен, кометам, кружащимся вокруг Солнца, или планетам, вращающимся по своим орбитам, теория Ньютона всегда давала чрезвычайно точное объяснение всем наблюдениям и предсказаниям, которые бесчисленное количество раз проверялись в самых разных условиях. Как мы уже подчеркивали, причины появления сомнений в этой необычайно успешной с экспериментальной точки зрения теории состояли в том, что согласно ей гравитационное взаимодействие передается мгновенно, а это противоречит специальной теории относительности.
Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично,расхождения между общей теорией относительности Эйнштейна — теорией гравитации, совместимой со специальной теорией относительности, — и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них10).
Мы любуемся звездами по ночам, но они, конечно, остаются на небе и днем. В это время мы обычно не видим их, потому что их далекие, точечные огни затмеваются светом Солнца. Однако во время солнечных затмений Луна временно заслоняет часть света, идущего си Солнца, и удаленные звезды становятся видимыми и днем. Тем не менее, присутствие Солнца продолжает оказывать влияние на испущенный ими свет. Свет от некоторых отдаленных звезд на своем пути к Земле должен пройти вблизи Солнца. Общая теория относительности Эйнштейна утверждает, что Солнце искривляет пространство и время, и что эта деформация оказывает влияние на траекторию идущего от звезд света. В конце концов, фотоны, излученные далекими звездами, путешествуют по Вселенной, и если ее структура искривлена, это окажет влияние на движение фотонов, также как и на движение любого материального тела. Искривление траектории будет максимальным для тех лучей, которые проходят вблизи поверхности Солнца на своем пути к Земле. Такие лучи обычно полностью затмеваются светом Солнца, но во время солнечных затмений их можно увидеть.
Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению видимого положения звезды. Это смещение может быть точно измерено путем сравнения видимого положения звезды по сравнению с ее истинным положением, известным по результатам ночных наблюдений звезды (в отсутствие отклоняющего влияния Солнца), полученным с интервалом примерно в полгода до или после затмения, когда Земля находится в соответствующем положении. В ноябре 1915 г. Эйнштейн, используя разработанную им новую теорию гравитации для расчета угла, на который должен отклониться луч света от звезды, прошедший рядом с поверхностью Солнца, получил значение 0,00049 градуса (1,75 угловых секунд, где одна угловая секунда равна 1/3 600 градуса). Этот крошечный угол равен углу раствора диафрагмы, сфокусированной на двадцатипятицентовой монетке в трех километрах от нее. Однако измерение столь малого угла было уже под силу технике тех дней. По просьбе сэра Фрэнка Дайсона, директора Гринвичской обсерватории, сэр Артур Эддингтон, известный астроном и секретарь Королевского астрономического общества Англии, организовал экспедицию на остров Принсипе, расположенный у западного побережья Африки, для проверки предсказания Эйнштейна в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г.