6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе — революционном пересмотре ранее существовавших понятий пространства и времени — вышладалеко за пределы научного сообшества, сделав Эйнштейна знаменитым во всем мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал: «Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!»11). Это было звездным часом Эйнштейна.
За годы, прошедшие со времени этого эксперимента, подтверждение общей теории относительности, сделанное Эддингтоном, неоднократно подвергалось критическому анализу. Многочисленные сложности и тонкости, связанные с измерениями, затрудняют их воспроизведение и ставят под вопрос достоверность первоначальных результатов. Однако за последние 40 лет были выполнены разнообразные эксперименты с использованием последних достижений современной техники. Эти эксперименты предназначались для проверки различных аспектов общей теории относительности. Все предсказания общей теории относительности получили подтверждение. Сегодня не существует сомнений, что модель гравитации, предложенная Эйнштейном, не только совместима со специальной теорией относительности, но и дает более точное совпадение с экспериментальными данными, чем теория Ньютона.
Если эффекты специальной теории относительности становятся наиболее очевидными при больших скоростях движения тел, то общая теория относительности выходит на сцену, когда тела имеют очень большую массу и вызывают сильное искривление пространства и времени. Рассмотрим два примера.
Первым из них является открытие, сделанное во время Первой мировой войны немецким астрономом Карлом Шварцшильдом, когда он, находясь в 1916 г. на русском фронте, в перерывах между расчетом траекторий артиллерийских снарядов знакомился с достижениями Эйнштейна в области гравитации. Удивительно, что спустя всего несколько месяцев после того, как Эйнштейн нанес завершающие мазки на полотно обшей теории относительности, Шварцшильд сумел, используя эту теорию, получить полную и точную картину того, как искривляются пространство и время в окрестности идеально сферической звезды. Шварцшильд послал полученные им результаты с русского фронта Эйнштейну, который по его поручению представил их Прусской академии.
Помимо подтверждения и математически точного расчета искривления, которое мы схематически показали на рис. 3.5, работа Шварцшильда — известная в настоящее время под названием «решения Шварцшильда» — выявила одно поразительное следствие общей теории относительности. Было показано, что если масса звезды сосредоточена в пределах достаточно малой сферической области (когда отношение массы звезды к ее радиусу не превосходит некоторого критического значения), то результирующее искривление пространства-времени будет столь значительным, что никакой объект (включая свет), достаточно приблизившийся к звезде, не сможет ускользнуть из этой гравитационной ловушки. Поскольку даже свет не сможет вырваться из таких «сжатых звезд», первоначально они получили название темных, или замороженных, звезд.(Это название принадлежит советским ученым Я. Б. Зельдовичу и И. Д. Новикову. — Прим. ред) Более броское название было предложено годы спустя Джоном Уилером, который назвал их черными дырами — черными, потому что они не могут излучать свет, и дырами, потому что любой объект, приблизившийся к ним на слишком малое расстояние, никогда не возвращается назад. Это название прочно закрепилось и устоялось.
Решение Шварцшильда иллюстрируется на рис. 3.7. Хотя черные дыры известны своей «прожорливостью», тела, которые проходят мимо них на безопасном расстоянии, отклоняются точно так же, как они отклонились бы под действием обычной звезды, и следуют дальше своей дорогой. Но тела любой природы, подошедшие слишком близко, ближе, чем на расстояние, которое называется горизонтом событий черной дыры, приговорены — они будут неуклонно падать к центру черной дыры, подвергаясь действию все более интенсивных и становя щихся, в конце концов, разрушительными гравитационных деформаций.