Читаем Электричество шаг за шагом полностью

Р-49. РЕЛЕ — ОЧЕНЬ ПРОСТЫЕ И ВАЖНЫЕ СОВМЕСТНЫЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА. Самое, пожалуй, простое взаимодействие электричества и магнетизма можно увидеть в электротехническом устройстве по имени реле (от французского глагола «релейр» — «сменять, заменять»). Когда к реле подводится управляющий входной сигнал Uвх, по катушке электромагнита идёт ток и его сердечник притягивает стальной якорь. Он перемещает пластинку изолятора, на которой закреплены подвижные контакты, каждый из них замыкает свою пару неподвижных контактов, и реле включает две мощные электрические цепи. Существует огромное многообразие реле, в том числе такие, которые позволяют с помощью маломощного управляющего сигнала переключать очень большие мощности, и такие, которые позволяют одним управляющим сигналом замыкать и размыкать большое количество контактов. В момент, когда на реле не подаётся управляющий сигнал, пружина оттягивает якорь от сердечника и подвижные контакты бездействуют.


Чем больше ёмкость С, чем больше зарядов должен накопить конденсатор, тем дольше будет продолжаться процесс заряда, тем дольше будет существовать в цепи зарядный ток. А если последовательно с конденсатором С в зарядную цепь включить резистор R, то он уменьшит ток в цепи, и процесс заряда конденсатора будет длиться дольше.

Нетрудно догадаться, что произойдёт, если отключить заряженный конденсатор от батареи и соединить его обкладки резистором: начнётся процесс разряда, по внешней цепи избыточные электроны будут переходить со своей обкладки на другую, и в цепи какое-то время будет идти разрядный ток. Вначале он тоже сравнительно большой, но постепенно уменьшается — лишних зарядов на обкладках конденсатора становится всё меньше и меньше, напряжение на нём снижается. Разряд конденсатора, подобно заряду, длится тем дольше, чем больше ёмкость конденсатора С (то есть чем больше зарядов должно уйти с обкладок) и чем больше сопротивление R разрядной цепи. Быстрее всего разряд произойдёт, если R = 0, то есть если соединить обкладки накоротко.

Наблюдая за зарядом и разрядом конденсатора, мы видим, что элементы электрической цепи определяют продолжительность тех или иных процессов, в данном случае время заряда и время разряда. Электрическая цепь, состоящая из С и R, или, как её часто называют, -цепочки, в данном случае чем-то напоминает песочные часы, «время разряда» которых зависит от количества песка и диаметра пропускного отверстия.

Чрезвычайно важная особенность RC-цепочки: её электрическое состояние может достаточно быстро меняться. И более того, мы можем управлять этим процессом, изменяя ёмкость конденсатора С или (и) сопротивление резистора R. Знакомясь с разными видами электромагнитной индукции, мы уже видели, как электрическое или магнитное состояние изменяется во времени, но здесь, в -цепочке, эти изменения особенно наглядны, и не случайно произведение RC называют постоянной времени.

Во всём, что рассказывалось до сих пор, во всех примерах электрических цепей, на всех наших учебных рисунках фигурировал один тип электрического генератора — химический источник тока, а конкретно, гальванический элемент или несколько последовательно соединённых элементов, их батарея. Непременная особенность этого источника тока состоит в том, что он создаёт постоянную, не меняющуюся э.д.с., за что вместе с некоторыми другими генераторами получил почётное звание «источник постоянного тока», или, иначе, «генератор постоянной э.д.с. (постоянного напряжения)». Кстати, как уже говорилось, батарейкой часто называют и один гальванический элемент, что конечно, неправильно. В переводе «батарея» означает некоторый комплекс, в частности, соединённые последовательно гальванические элементы, но что поделаешь, почему-то так принято.

Появившаяся в этом разделе КС-цепочка даёт повод подумать об иных генераторах, они, в отличие от химических, создают не постоянную, а меняющуюся э.д.с. (напряжение). В их числе главный кормилец всей электроэнергетики — генератор переменной электродвижущей силы, с которой мы начнём знакомиться в следующей главе.



Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука