Читаем Электричество шаг за шагом полностью

ВК-24.Мы подробно обсудили натирание пластмассы и стекла, но один вопрос остался без ответа. Почему к наэлектризованным предметам притягиваются мелкие клочки бумаги, у которых вроде бы нет никакого своего заряда? Когда-то были придуманы фантастические молекулярные цепочки, которые могли бы тянуть бумагу, но эта идея блестяще провалилась, когда опыт повторили в вакууме. Там молекулярных цепочек вообще не могло быть. К счастью, нашлось другое объяснение — поляризация (ВК-25).


Два разных сорта электричества нужно было как-то назвать, скажем, электричество сорта А и электричество сорта Б. Или электричество «Жёлтое» и «Зелёное». Или, наконец, «Стеклянное» и «Пластмассовое». Однако тому, кто давал имена этим двум разным сортам, понравились другие слова, и он назвал два разных сорта электричества «Положительным» (сокращённое обозначение +, «плюс») и «Отрицательным» (-, «минус»). В данном случае привычный для нас смысл этих слов не имеет никакого значения, и ни в коем случае не нужно думать, что положительное электричество чем-то лучше отрицательного, как, скажем, положительный литературный герой или положительный пример.

Электрический заряд, который назвали положительным, появляется у натёртого стекла, отрицательный — у натёртой пластмассы. Попробуем провести такой мысленный эксперимент: будем ломать, распиливать, крошить наэлектризованные стекло и пластмассу, чтобы найти в них самые маленькие порции электрического заряда.

Начнём со стекла.

Т-23. В наэлектризованных палочках у некоторых молекул чувствуется электрический заряд. Мысленный эксперимент, кроме всего прочего, хорош тем, что любая трудная работа здесь идёт легко и быстро. Вот и у нас уже появились сначала маленькие кусочки наэлектризованного стекла, затем очень маленькие и наконец самые маленькие его частички с хорошо известным названием — «молекула». Оно происходит от латинского слова «моле» — «масса», так что слово «молекула» означает «маленькая масса, массочка».

Можно, конечно, и появившиеся у нас молекулы стекла разделить на составные части, но то, что при этом получится, уже не будет стеклом. Здесь, пожалуй, уместно такое сравнение. Представьте себе, что вам нужно разделить на районы город. Самый маленький район, который может получиться, — это один дом, молекула большого города. Можно, конечно, и дом разобрать по частям, но вряд ли оконную раму или водопроводный кран можно будет назвать районом города.

Измельчая в мысленном эксперименте предварительно натёртые, то есть наэлектризованные, стекло и пластмассу и в итоге получив их молекулы, мы обнаружим, что некоторые молекулы тоже наэлектризованы, то есть тоже обладают электрическими свойствами, а другие — не обладают. Остаётся предположить, что электрический заряд молекулы находится в какой-то ещё более мелкой частице, которая или входит или не входит в молекулу. И если входит, то делает эту молекулу наэлектризованной. А если не входит, то молекула остаётся электрически нейтральной.

Чтобы проверить эту гипотезу, продолжим свой мысленный эксперимент и разделим наэлектризованную молекулу на составные части.



ВК-25. Предположим, что в этих больших пластиковых мешках ионизированный газ с беспорядочным расположением зарядов (слева), и поэтому с нулевым внешним электрическим полем. Поднесённый к одному из мешков (справа) стержень с положительным электрическим зарядом осуществил так называемую поляризацию газа, притянул к себе электроны и оттолкнул положительные заряды, создав две области с зарядом + и —. Во многих случаях каждая из них может вести себя как отдельный заряд.



Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука