Читаем Электричество шаг за шагом полностью

В молекулу могут входить самые разные атомы и в самом разном количестве (в молекуле воды — три атома, в молекуле белка — десятки тысяч), атомы могут по-разному соединяться друг с другом, образовывать различные пространственные конструкции. И в итоге из небольшого сравнительно количества элементов (118 — это тоже немного, но в строительстве молекул в основном используется 40–50 разновидностей атомов) получаете я огромное количество комбинаций, образуются миллиарды самых разных веществ. Разные сочетания разных атомов дают воздух и воду, мрамор и зелёный лист винограда, соль и сахар, стекло и пластмассу.

Продолжив свой мысленный эксперимент и разобрав на части молекулы подопытных веществ — стекла и пластмассы, — мы обнаружим, что и среди атомов попадаются совершенно, казалось бы, одинаковые на вид, но при этом разные по своим электрическим свойствам. Мы обнаружим наэлектризованные атомы и не наэлектризованные, другими словами, атомы с электрическим зарядом и без него, то есть электрически нейтральные. И после этого нам не остаётся ничего другого, как в поисках мельчайшей порции электрического заряда разобрать на части сам атом.



ВК-26.В мелких клочках бумаги под действием электрического поля наэлектризованного предмета тоже происходит поляризация. Но не за счёт перемещения атомов, а за счёт некоторого вытягивания их электронных орбит. В результате этой массовой деформации орбит в одной части бумажного лепестка оказывается более сильным положительный заряд, а в противоположной части — отрицательный. Одну из этих частей и притягивает наэлектризованный предмет, заставляя двигаться весь лепесток.


Т-25. Несколько похвальных слов моделям и моделированию. Склеенная из пластмассы модель самолёта или даже летающая его модель лишь в небольшой степени похожи на воздушный лайнер, который берёт на борт сотню пассажиров. Но вместе с тем, рассматривая эти модели, можно узнать много важного о настоящих самолётах, об их устройстве, об основных деталях, о том, для чего эти детали нужны. Ещё одна разновидность модели — чертежи, на них отрабатывается и предварительно проверяется будущая реальная машина. На чертежах, например, без огромных затрат на постройку реальных образцов, проверяют, как соединятся, состыкуются будущие детали самолёта.

Здесь хочется сказать несколько слов о самом этом понятии «модель», о котором надо бы написать отдельную книжку, а ещё лучше — никем пока, к сожалению, не запланированный школьный учебник.

Умение строить модели можно встретить только у живых организмов, кварцевый кристалл или горная река моделей не строят. Да и в мире живого у первых примитивных его представителей тоже не было никаких приспособлений, чтобы строить модели. А те, у кого такие приспособления появлялись, получали огромное преимущество, они чаще побеждали в борьбе за существование, их род успешно продолжался и совершенствовался. К примеру, древние насекомые, охотясь за пищей, создавали в особых своих нервных узлах (из них у некоторых видов в дальнейшем образовался мозг) своего рода химический чертёж, модель этой охоты. Порывшись в памяти, они проверяли, годится ли намеченная жертва на обед, на модели обстановки определяли, куда «пища» перемещается, как надо двигаться самому, чтобы перехватить её. Именно такое моделирование вместо бесконечных проб и опасных ошибок оказалось могучей движущей силой развития живых существ.



ВК-27.Атом в действительности очень «воздушная» конструкция, в нём много «пустоты». Если представить себе атомное ядро размером с яблоко, то в этом масштабе окажется, что электроны размером с пылинку вращаются вокруг ядра на расстоянии десятки и сотни метров. Большими бывают и межмолекулярные объёмы, где могут двигаться заряды. Но их подвижность, выраженная в конечном счёте величиной сопротивления, зависит не только от свободного пространства для перемещений.


Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука