Читаем Электричество шаг за шагом полностью

В 1958 году, то есть примерно через 10 лет после рождения транзистора, был сделан следующий, едва ли не самый главный технологический рывок. Методами фотолитографии и введения примесей из газовой среды в одном полупроводниковом кристаллике сформировали сразу четыре транзистора, нанесли нужные соединительные линии и, как говорится, одним ударом получили электронный блок — первую полностью готовую четырёхтранзисторную интегральную схему, первый чип. В кристалле формировались также резисторы и конденсаторы, роль последних взял на себя рп-переход, на который подано обратное напряжение.

Технология интегральных схем быстро продвигалась вперёд и вскоре практически вытеснила из аппаратуры основные дискретные элементы — отдельные транзисторы, резисторы, конденсаторы. Через пару лет после создания первого чипа уже серийно выпускались интегральные схемы с десятками и сотнями элементов, сегодня рядовым и, кстати, довольно дешёвым стал кристалл, в котором миллионы схемных деталей. Причём выпускаются эти шедевры автоматами, без прикосновения человеческой руки — на большой кремниевой пластине формируется сразу несколько десятков интегральных схем, затем их тщательно проверяют, тоже, разумеется, автоматически, и, наконец, разрезают на отдельные кристаллы. Здесь уместно вспомнить ещё одно великое достижение технологов и совсем уже невидимых миру машиностроителей. Сложный электронный блок уже и собирают автоматы — они сами с очень высокой точностью ставят на печатную плату детали, сразу производят все пайки, тщательно проверяют готовое изделие.

Увеличить число элементов в кристалле позволили новые технологии, а также давшийся недёшево прогресс фотолитографии. Она начинала с деталей миллиметровых размеров, затем технология преодолела микронный рубеж, и в 1998 году ведущие фирмы уже выпускали процессоры, где детали транзистора имели размер 0,25 микрона, то есть 250 нанометров. Чтобы подобная деталь стала размером с булавочную головку, её надо увеличить в 5000 раз, при таком увеличении сама булавочная головка превратится в двухэтажный дом. Через три года технологи уменьшили размер транзистора в микросхеме до 130 нанометров, ещё через три года — до 70 нанометров, а сейчас широко выпускаются микросхемы с размером деталей 45 нанометров и строятся новые заводы, которые будут делать микросхемы с транзисторами размером 22 нанометра. Если увеличить такой транзистор до размеров булавочной головки и саму её увеличить во столько же раз, то булавочная головка превратится уже в 20-этажный дом.



ВК-265.Размышляя об электричестве и электронике, нельзя не вспомнить о чувствительных приборах и больших управляющих электронных устройствах в системе обороны страны. Их задача — вовремя обнаружить возникшую опасность и включить при необходимости средства защиты, детально отобразив события для операторов и военного руководства. Можно считать, что приборы оповещения и управления объектами обороны — важное слагаемое предохранения мира от большой войны.


Уменьшение размеров деталей в чипе имеет ещё одну цель, в каких-то случаях весьма важную, — уменьшается время срабатывания полупроводниковых приборов, то есть компьютер работает быстрее. Это, кстати, отражено в одной из главных характеристик процессора — его тактовой частоте. Ещё лет десять назад лучшие процессоры работали с тактовой частотой до 160 МГц (мегагерц), сегодня она превышает 2 гигагерца, а иногда и 4. Это, видимо, ещё не предел.

Технологии изменили качественный уровень других устройств, нередко при этом сделав их более дешёвыми, более доступными. Появился, например, принтер, где цветная картинка создаётся микроскопическими капельками чернил, их в нужный момент и в нужное место (точность попадания — микроны) выстреливает цепочка тепловых или пьезоэлектрических насосов, опять-таки микроскопических. Технологии сделали массовым изделием столь сложный физический прибор, как лазерный диод с гетероструктурой, где меняется не только тип проводимости микрокристалла (зона р, зона п), но и сама его физическая природа.

Почти везде одна из основных технологических задач — миниатюризация и в перспективе даже переход на молекулярный уровень. Так что очень может быть, что круг замкнётся, и электронная техника придёт к молекулярным шедеврам информационных систем живой природы.



Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука