Читаем Электричество шаг за шагом полностью

У натёртой стеклянной палочки положительный заряд появляется именно потому, что при натирании мы, грубо говоря, выдираем электроны из многих атомов, расположенных в поверхностном слое стекла. Эти электроны переходят на тряпку, которой мы натирали стеклянную палочку, а сама палочка остаётся с нехваткой электронов, то есть с положительным зарядом.

А теперь обратный процесс: можно каким-то способом втолкнуть в атом лишний электрон, у некоторых веществ ему найдётся местечко на орбите. У такого атома электронов окажется больше, чем протонов в ядре, а значит, появится отрицательный заряд. В итоге отрицательный заряд будет у молекулы, включившей в себя этот атом, и у вещества, куда входят такие наэлектризованные молекулы. Именно так можно объяснить появление отрицательного электрического заряда у натёртой пластмассовой палочки — при натирании в неё втиснулись лишние электроны, например, вырванные из тряпки, которой натирали пластмассу (Т-8).

В заключение остаётся назвать имена, которые присваивают атомам в зависимости от их электрического состояния.

Нейтральный атом — это тот, который никак не проявляет своих электрических свойств. Положительный ион — атом с недостающими электронами или, другими словами, с избытком положительного заряда. Отрицательный ион — атом с избытком электронов, то есть в итоге с отрицательным зарядом.



ВК-35.Объединив свои внешние электронные орбиты, атомы могут создать единую устойчивую многоатомную конструкцию — молекулу. Иногда для такого «склеивания» атомов нужно затратить энергию, а иногда наоборот — энергия выделяется при соединении атомов в молекулу или при объединении небольших молекул в более крупную. Энергия выделяется, например, при горении — при соединении органических (содержащих углерод) молекул с кислородом.


Т-31. Электрические силы могли бы работать в машинах. Мы уже вспоминали о том, что люди с давних пор стремились умножить силу своих мускулов, выполнять работу большую, чем могли бы по своим природным способностям (Т-19). Стремились они к этому не просто так, не ради спортивного интереса, а для того, чтобы жить лучше, чем предначертано дикой природой. В разные времена человек приспособил себе в помощники домашних животных, энергию падающей воды, ветра, расширяющегося пара, взрывающихся бензиновых паров. Наконец настало время подумать об электричестве.

Если глубоко вникнуть в существо дела, то окажется, что даже наэлектризованные предметы могли бы выполнять значительную работу, скажем, перемещать какие-либо грузы. То, что в известных опытах с натиранием палочек могучее электричество показало себя слабым работником, объясняется очень просто: натиранием мы нарушили электрическое равновесие у чрезвычайно малого числа атомов, создали очень слабый суммарный заряд. Если в стеклянной и пластмассовой палочках «наэлектризовать» хотя бы 1 процент атомов, то, находясь на расстоянии 10 сантиметров, они притягивали бы друг друга с такой силой, которая легко сдвинула бы с места автомобиль.

И все же в использовании электрической энергии техника не пошла по пути машин, которые приводятся в движение сильно наэлектризованными деталями, некоторым подобием очень сильных магнитов. В современных электрических машинах и установках работают детали, наэлектризованные самой природой, — мельчайшие частицы вещества, с которыми мы встретились на нашей экскурсии в мир атомов и молекул. А конкретно — в современных электрических машинах всех типов работают движущиеся электроны, положительные и отрицательные ионы. Главным образом — электроны.

Глава 3

Завод, где работают электроны

Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука