Читаем Электричество шаг за шагом полностью

В твёрдом теле атомы как бы закреплены, связаны друг с другом в прочный каркас. В жидкостях атомы связаны слабее, могут смещаться, именно поэтому жидкость «мягкая», она легко изгибается, течёт, принимает форму сосуда. Ну а в газах у атомов вообще полная свобода — лети куда хочешь. И во всех случаях — в твёрдом теле, в жидкостях и в газах — атомы совершают какие-то небольшие движения, колеблются, пошатываются (Т-8), причём тем сильнее, чем выше температура вещества. Эти колебания и пошатывания прекращаются только при абсолютном нуле, при температуре 0 градусов по шкале Кельвина (ноль градусов Кельвина записывается так — 0 К), а это минус 273,16 градуса по шкале Цельсия. Получить такую низкую температуру пока никому не удалось, хотя подошли к ней очень близко — остались тысячные доли градуса.



ВК-38. Чтобы количественно оценить электрический ток (обычно обозначается буквой I), существует единица измерения ампер (А) — это такой ток, при котором через поперечное сечение проводника за одну секунду проходит электрический заряд 1 кулон, например 6,28∙1018 электронов. Если за секунду проходит заряд в 2 кулона, то ток, естественно, в два раза интенсивней, то есть составляет 2 ампера, а если 1 кулон проходит через поперечное сечение проводника за 2 секунды, то ток составляет 0,5 ампера.



Р-10. ПЯТЁРКА ГЛАВНЫХ СИЛ ПРИРОДЫ. Тот, кто интересовался научными дискуссиями, проходившими сорок-пятьдесят лет назад, наверняка помнит одну из их тем — «Основные силы природы». Она называла пять основных сил, полученных нашим миром при его рождении, — это силы гравитационные (1), электрические (2), магнитные (3), а также действующие только в микромире ядерные сильные силы (4) и ядерные слабые силы (5). Главными эти силы назвали потому, что всё происходящее в мире сводится к действию одной или нескольких сил из этой пятёрки.

Уже давно было известно, что электрические и магнитные силы есть нечто единое по имени электромагнетизм, что в эту группу уже нужно включить слабые ядерные силы, назвав их электрослабыми. На этом рисунке Р-10 мы сознательно повторили вольность своих коллег, предложив читателям всю пятёрку природных сил с учётом их способности действовать самостоятельно и без учёта родственных связей. Мы ещё поговорим о союзе электричества и магнетизма, на котором основана чуть ли не вся электротехника. Вспомним мы и о сильных ядерных силах, их породил так называемый барионный заряд протона и нейтрона, который начинает действовать на очень малых расстояниях. Но зато сильные силы во много раз сильнее электрических сил и поэтому успешно противодействуют развалу атомных ядер (4) из-за расталкивания протонов с одинаковым электрическим зарядом (см. Р-2). И без ядерных слабых сил не мог бы существовать наш мир, они участвуют в превращении атомов водорода в более сложные атомы гелия (5), а этот процесс кормит энергией большинство звёзд, в том числе и наше Солнце.


Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука