Читаем Электричество шаг за шагом полностью

Р-13. У НАС ТОЖЕ ВОЗМОЖНЫ ВАРИАНТЫ… Таблица на этом рисунке поясняет, какие в принципе возможны изменения, в результате которых у какого-либо физического тела начнёт показывать себя электрический заряд, как мы это наблюдали при натирании стекла и пластмассы. В первых трёх столбцах таблицы показаны 3 атома (атом водорода и два условных атома с разным числом протонов в ядре) в идеальном состоянии — в каждом из них равно число положительных (+) и отрицательных (—) зарядов. Вещество, созданное из таких атомов, никаких электрических свойств не проявляет. В следующей тройке колонок у атомов связь внешних электронов с ядром слабее, и часть появившихся свободных электронов удаётся удалить из вещества, как это происходило при натирании стекла. У вещества, о котором рассказывают три последних столбца таблицы, атомы сумели где-то добыть и присоединить к себе несколько лишних электронов, и общий электрический заряд вещества оказался отрицательным, как это было при натирании пластмассы.


Прежде чем двигаться дальше — два предупреждения. Во-первых, экспериментируя с наэлектризованными палочками и проводником, мы ввели важнейшее для всей электротехники понятие «электрический ток», сказав о нём буквально несколько слов. Но это лишь самое предварительное сообщение о токе, очень скоро о нём будет рассказано подробно. Во-вторых, экспериментируя с наэлектризованными палочками и проводником, хорошо бы какими-нибудь цифрами оценить работу нашей учебной электрической цепи. Много ли она получает энергии? Много ли выдаёт тепла? От чего всё это зависит? По каким показателям можно оценить то, что происходит в цепи? Как определить работоспособность свободных электронов? Как оценить массовость их движения в проводнике? Ответить на подобные вопросы не очень трудно, это непременно будет сделано, и тоже очень скоро, буквально через несколько страниц (Т-43). Значительно сложнее ответить на другой вопрос, просто смешной, на первый взгляд: как технически избыточные заряды создают электрический ток? Каким способом один электрический заряд толкает второй заряд? Может быть, просто прижимается к нему и толкает, как, скажем, напористый хоккеист плечом толкает своего соперника?

Т-38. Наряду с веществом существует и такой вид материи, как поле. Во всём нашем рассказе об электричестве этот небольшой раздел — один из самых сложных, в значительной степени из-за него пришлось начинать издалека. С того, что человек нелегко и непросто постигал устройство мира. Что мир устроен намного сложнее, чем кажется с первого взгляда. И что нужно уметь считаться с реальностью, какой бы непривычной она ни казалась. Нужно научиться признавать очевидные факты, ограждать себя от неверия и внутренних протестов спокойной формулой «Так устроен этот мир…».

Мы, к сожалению, не видим, как лишние электроны пластмассовой палочки (-) подталкивают свободные электроны проводника, — плечом или как-то иначе (Т-8). Но мы прекрасно видели, как натёртая палочка с довольно большого расстояния подтягивала клочки бумаги (Р-1, Р-17). Каким образом? С помощью каких нитей? Через каких посредников? Не может же палочка действовать на бумажки через Ничто, обязательно должно существовать какое-то Нечто, с помощью которого один заряд тянет к себе другой.

Проще всего было бы предположить, что заряды как-то взаимодействуют через вещество, которое находится между ними, в нашем примере с притягиванием бумажек — через воздух. Например, заряды тянут или толкают друг друга через молекулы, атомы, электроны или ещё какие-нибудь частицы вещества, подобно тому, как паровоз через весь состав передаёт свою тягу последнему вагону. Но достаточно перенести эксперимент в безвоздушное пространство, в вакуум, и эта гипотеза безнадёжно отпадает — в вакууме, в пустоте, где никакого промежуточного вещества нет, палочка притягивает клочки бумаги с такой же силой, как и в воздухе. А это значит…



Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука