Читаем Электричество шаг за шагом полностью

Р-12. НО, МОЖЕТ БЫТЬ, ГДЕ-ТО ЧТО-ТО ВЫШЛО ИНАЧЕ. Другой пример (первый см. Р-11) такой рабочей находки — реликтовое, то есть древнейшее, радиоизлучение, оставшееся во Вселенной со времён Большого взрыва. Это излучение в 1968 году обнаружили американские астрофизики Арно Пензиас и Роберт Вильсон, занимаясь подготовкой антенны в установке для связи с космическими аппаратами. Находка решительно подтвердила созданную теоретиками картину Большого взрыва, в котором с самого начала участвовала сверхплотная и сверхгорячая материя. Из неё через много тысячелетий сформировались некоторые привычные для нас теперь атомы, а ещё позже — сгустки газа и звёзды, в том числе наше Солнце.

Обнаруженное на Земле реликтовое излучение вдохновило американских и европейских космических специалистов на создание спутников для его исследования в открытом космосе, свободном от земных помех. В 2006 году начали публиковаться интересные результаты проведённых измерений. В их числе, например, данные о некоторых изменениях уровня реликтового излучения в разных точках небосвода, а также данные, с высокой точностью подтвердившие важные элементы теории Большого взрыва (1).

Результатами последних исследований реликтового излучения пытаются поддержать теорию инфляционного (от латинского слова «инфлатио» — «вздутие») расширения нашего мира. Она полагает, что после Большого взрыва наша Вселенная расширялась с разной скоростью. Во времена особо быстрого расширения она создавала связанные с нашей Вселенной, но уже самостоятельно живущие её части (2) — вселенные, в которых могут идти совершенно другие процессы и действовать иные физические законы.


Все вещества принято делить на три основные группы: проводники, полупроводники и диэлектрики, которые иногда называют изоляторами.

О проводниках мы уже говорили — это, прежде всего, металлы, в их атомах внешние электроны связаны с ядром очень слабо, и почти каждый атом превратился в положительный ион, выпустил в межатомное пространство один или даже несколько электронов. В металлах так много свободных электронов, что по отношению к ним применяют выражения «электронный газ» или «электронная пыль». Проводниками могут быть жидкости и газы. «Могут быть» в данном случае нужно понимать так: количество свободных зарядов в жидкости (или в газе) зависит от того, какие вещества в ней растворены, какие химические процессы происходят. Например, в дистиллированной воде свободных зарядов чрезвычайно мало, практически можно считать, что их нет вообще. Но стоит бросить в дистиллированную воду щепотку соли, как вода становится проводником — соль растворяется, образует в воде большое количество свободных положительных и отрицательных ионов. При определённых условиях хорошими проводниками становятся некоторые газы, в этом можно убедиться, взглянув на горящую лампу дневного света (Т-177).

В диэлектриках (изоляторах) все электроны крепко связаны с ядром, и редко какой-то из них может вырваться на свободу. Нужно пересмотреть миллиарды атомов диэлектрика, чтобы отыскать среди них один положительный ион — атом, упустивший свой электрон в межатомное пространство.

Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука