Читаем Электроника для начинающих полностью

Рис. 2.76. Когда два резистора соединены последовательно, то на большем сопротивлении будет падать большее напряжение, чем на меньшем. Если резистор будет иметь бесконечно большое сопротивление (как это будет в случае конденсатора), то меньшее сопротивление больше не будет давать какой-либо вклад в падение напряжения, а напряжение на его выводах будет одинаковым (т. е. между этими точками разность потенциалов будет равна нулю)

Теперь предположим, что вы убрали один резистор номиналом 1K (на рисунке он справа) и заменили его резистором 9K. Общее сопротивление цепи теперь станет равным 10K и поэтому на резисторе номиналом 9K будет падать 90 % общего напряжения 12 В. Оно будет равным 10,8 В. Вы должны проверить это с помощью своего мультиметра. (Вряд ли вам удастся найти резистор с сопротивлением 9K, поскольку это нестандартное значение. Замените его ближайшим по величине сопротивлением, которое вы найдете.)

Затем предположим, что вы убрали резистор номиналом 9K и заменили его резистором на 99K. Падение напряжения на нем станет равным 99 % возможного напряжения или 11,88 В. Теперь вы можете заметить общую закономерность: чем больше сопротивление резистора, тем больше его вклад в падение напряжения.

Однако, как я уже отмечал ранее, конденсатор полностью блокирует все постоянное напряжение. Он может аккумулировать электрический заряд, но при этом никакого тока через него не проходит. Поэтому конденсатор ведет себя, как резистор, который по постоянному току имеет бесконечное сопротивление. (В действительности изоляционные материалы внутри конденсатора допускают небольшие токи «утечки», а вот идеальный конденсатор обладает бесконечным сопротивлением.)

Величина сопротивления любого резистора, который вы подключаете последовательно конденсатору, по сравнению с его сопротивлением практически равна нулю. Вне зависимости от того, насколько велико сопротивление резистора, конденсатор обладает гораздо большим сопротивлением. Это означает, что на конденсаторе падает практически все напряжение источника питания, а разность напряжений на одном и другом выводе резистора будет равна нулю (в предположении, что мы пренебрежем некоторой неидеальностью используемых компонентов).

Помочь прояснить это может изображение на рис. 2.76.

Используя реальные резисторы и конденсаторы, вы можете проверить это, хотя наверняка столкнетесь с небольшой проблемой. Когда вы для измерения постоянного напряжения будете использовать мультиметр, который должен при этом находиться в соответствующем режиме, то он будет слегка влиять на ток, протекающий по цепи в процессе измерения, хотя это влияние и очень мало. Прибор отбирает небольшое значение тока на себя, и это не оказывает существенного влияния на показания, в том случае, когда вы измеряете падение напряжения на резисторе. Внутреннее сопротивление мультиметра намного больше, чем величина сопротивления большинства резисторов. Однако следует помнить, что внутреннее сопротивление конденсатора почти равно бесконечности.

В этом случае внутреннее сопротивление мультиметра уже будет иметь значение. Поскольку вы никогда не сможете иметь идеальный мультиметр, даже тогда, когда у вас будет идеальный конденсатор и резистор, ваш прибор всегда будет немного влиять на схему, и вы, наверняка, получите приблизительный результат измерения.

Если же вы попытаетесь измерить напряжение на конденсаторе, который был заряжен, но в данный момент не подключен к какой-либо цепи, то вы увидите, что значение напряжения будет медленно уменьшаться, поскольку конденсатор будет разряжаться через подключенный мультиметр.

Постоянная времени

Вы можете удивиться, если узнаете, что существует способ точно предсказать время, в течение которого будут заряжаться различные конденсаторы, когда они подключены к различным резисторам. Существует ли формула для расчета этого?

Естественно, ответ будет — «да», но способ, которым мы будем измерять это время, будет несколько замысловатым, поскольку конденсаторы не заряжаются с постоянной скоростью. Они достигают значения напряжения равного 1 В очень быстро, значения 2 В уже не так быстро, а 3 В еще медленнее и т. д. Вы можете представить себе электроны, накапливающиеся на пластине, людьми, которые прогуливаются в аудитории и которые ищут место для того, чтобы сесть. Чем меньше мест остается, тем больше людям нужно времени, чтобы найти их.

Величина, которая описывает это, называется «постоянная времени». Определение этой величины очень простое:

τ = RC,

Перейти на страницу:

Все книги серии Электроника

Твой первый квадрокоптер: теория и практика
Твой первый квадрокоптер: теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем, OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера.Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ дня компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.Для читателей, интересующихся электроникой, робототехникой, авиамоделизмом

Валерий Станиславович Яценков

Развлечения
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника