Читаем Электроника?.. Нет ничего проще! полностью

Это наряду с усовершенствованием конструкции отклоняющих электродов позволило повысить чувствительность электронного луча к отклонению до 5 мм/в и даже больше. В этих условиях, используя транзисторы при нормальном для них напряжении питания, можно очень легко заставить луч перемещаться по всему экрану трубки.

Н. — Как досадно, что этих трубок не было раньше! Они оказались бы очень практичными для усилителей на лампах с подогревными катодами. Но один вопрос меня серьезно беспокоит: скажи, пожалуйста, какую полосу пропускания способны обеспечить эти осциллографы на транзисторах?


Стробоскопический осциллограф



Л. — Я знаю современные осциллографы, обладающие полосой пропускания около 20 Мгц. что не так плохо. Но следует признать, что, даже мобилизуя все достижения техники, очень трудно сделать полосу пропускания шире 50 или 80 Мгц. Но для наблюдения еще более быстрых явлений при условии, что они периодические, может служить интересный прибор — стробоскопический осциллограф.

Н. — Что это за инструмент? Я о нем ничего не слышал.

Л. — Это просто осциллограф, в котором использован стробоскопический эффект. Ты с ним знаком? Если вращающийся диск освещать короткими вспышками света, давая вспышки через равные промежутки времени по одной на каждый оборот, то вследствие инерции зрительного восприятия диск покажется нам неподвижным. Если несколько уменьшить частоту вспышек, то при каждой новой вспышке изображение диска немного смещается относительно предыдущего положения и у нас складывается впечатление, что диск вращается очень медленно.

Н. — Очень хитрая система. Я видел ее, но совершенно не понимал, как она работает. Но как ты применишь этот принцип к осциллографу?

Л. — На рис. 113 я подготовил для тебя структурную схему такого осциллографа.



Рис 113.Структурная схема стробоскопического осциллографа, позволяющего как бы из кусочков собрать кривую, характеризующую форму периодического сигнала.


Предположим, что наблюдаемому периодическому сигналу всегда предшествует сигнал синхронизации. В случае надобности сигнал синхронизации можно получить из самого наблюдаемого сигнала с помощью схемы наподобие триггера Шмитта, а наблюдаемый сигнал задержать с помощью линии задержки. Каждый поступающий импульс синхронизации запускает один очень резко нарастающий пилообразный сигнал. Одновременно импульс синхронизации подается в систему, именуемую сумматором, которая порциями заряжает конденсатор, давая ему порцию энергии при поступлении каждого импульса синхронизации. Пилообразный сигнал с резким нарастанием и сигнал, вырабатываемый сумматором, подаются на схему, называемую компаратором (устройством сравнения). В момент, когда напряжения, подавляемые на два входа этой схемы, оказываются равными, компаратор дает на выходе импульс. Этот импульс используется для управления своеобразным электронным прерывателем, который подключает сигнал к накопительному конденсатору С только в тот момент, когда получает с компаратора отпирающий импульс.[17]



Н. — Все это безумно сложно!

Л. — А я и не говорил, что это просто. Но я считаю, что ты должен знать это устройство, революционизирующее радиоэлектронику высоких частот (где время измеряется наносекундами, т. е. миллиардными долями секунды).



Как ты видишь, при поступлении первого сигнала выходное напряжение сумматора почти равно нулю. А это означает, что компаратор даст свой импульс в самом начале подъема крутого пилообразного сигнала, и электронный прерыватель подаст сигнал на конденсатор С в момент, непосредственно следующий за импульсом синхронизации.

В следующий период выходное напряжение сумматора повысится на одну ступеньку, и компаратор немного позже даст свой импульс. Следовательно, на этот раз сигнал позже замкнется на запоминающий конденсатор С, и мы будем анализировать несколько более задержанный относительно импульса синхронизации момент изучаемого сигнала. Каждый период напряжения конденсатора несколько позднее подключается к сигналу. Исходя из предположения, что между периодами конденсатор С не разряжается, мы постепенно соберем на выводах конденсатора С изменение напряжения, соответствующее изменению напряжения значительно замедленного сигнала. Все происходит точно так, как в стробоскопе: в каждый момент «смотрят» на чуточку более поздний момент сигнала. Прежде чем подать напряжение с выводов конденсатора С на вертикальные отклоняющие пластины осциллографа, это напряжение усиливают. Горизонтальное отклонение осуществляется непосредственно напряжением сумматора. Поэтому, как ты сам можешь понять, световое пятно скачкообразно перемещается на экране электронно-лучевой трубки из одной точки в другую. Электронный луч пунктирной линией вычерчивает кривую, характеризующую изменение напряжения сигнала во времени. Такой результат можно получить, используя усилители с очень небольшой полосой пропускания.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Москва при Романовых. К 400-летию царской династии Романовых
Москва при Романовых. К 400-летию царской династии Романовых

Впервые за последние сто лет выходит книга, посвященная такой важной теме в истории России, как «Москва и Романовы». Влияние царей и императоров из династии Романовых на развитие Москвы трудно переоценить. В то же время не менее решающую роль сыграла Первопрестольная и в судьбе самих Романовых, став для них, по сути, родовой вотчиной. Здесь родился и венчался на царство первый царь династии – Михаил Федорович, затем его сын Алексей Михайлович, а следом и его венценосные потомки – Федор, Петр, Елизавета, Александр… Все самодержцы Романовы короновались в Москве, а ряд из них нашли здесь свое последнее пристанище.Читатель узнает интереснейшие исторические подробности: как проходило избрание на царство Михаила Федоровича, за что Петр I лишил Москву столичного статуса, как отразилась на Москве просвещенная эпоха Екатерины II, какова была политика Александра I по отношению к Москве в 1812 году, как Николай I пытался затушить оппозиционность Москвы и какими глазами смотрело на город его Третье отделение, как отмечалось 300-летие дома Романовых и т. д.В книге повествуется и о знаковых московских зданиях и достопримечательностях, связанных с династией Романовых, а таковых немало: Успенский собор, Новоспасский монастырь, боярские палаты на Варварке, Триумфальная арка, Храм Христа Спасителя, Московский университет, Большой театр, Благородное собрание, Английский клуб, Николаевский вокзал, Музей изящных искусств имени Александра III, Манеж и многое другое…Книга написана на основе изучения большого числа исторических источников и снабжена именным указателем.Автор – известный писатель и историк Александр Васькин.

Александр Анатольевич Васькин

Биографии и Мемуары / Культурология / Скульптура и архитектура / История / Техника / Архитектура
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута

С помощью книги Андрея Гусарова вы самостоятельно, неторопливо, без экскурсовода прогуляетесь по самым знаковым местам удивительного города на Неве. Издание включает 34 познавательные экскурсии. Начало повествования посвящено биографии основателя города, последнему русскому царю и первому императору России – Петру I. Здесь же дан обзорный географический очерк с указанием административно-территориального деления Санкт-Петербурга. Вас ждет знакомство с неповторимым и блистательным городом. Вы прочтете о важных городских памятниках архитектуры – великих творениях гениальных зодчих, познакомитесь с всемирно известными музеями – собраниями коллекций живописи, графики, бесценных реликвий прошлого… Узнаете, что Северная столица – место всех религий и в ней рядом стоят великолепные здания разных конфессий. Вы посетите зеленые уголки мегаполиса – парки и скверы и символы города – важные памятники. Истории Медного всадника, Румянцевского обелиска и колонны Славы запечатлели в памяти славное прошлое государства Российского…

Андрей Юрьевич Гусаров

Скульптура и архитектура / Техника / Архитектура