Занимаясь устранением неисправностей в велосипеде, в часах или в иной механической машине, как правило, сразу видишь, что происходит, какая деталь попадает не туда, куда нужно, или движется не так, как следует. И сразу же можешь догадаться, что и как подправить. А вот в электрических и электронных схемах все намного сложнее. Потому что в этих схемах идут невидимые и неслышимые процессы, о некоторых из них можно получить представление по косвенным приметам (появление дыма не в счет), о других же вообще можно узнать, только пользуясь специальными измерительными приборами. Так, например, по искаженному звуку в громкоговорителе можно предположить, что какой-то из усилительных каскадов попал в неудачный режим, возможно, работает с отсечкой. Можно, конечно, найти виновника «методом проб и ошибок» — менять какой-либо элемент в схеме и следить за тем, что это дает. Но чтобы быстро и точно узнать, какой именно каскад искажает сигнал и по какой причине, для этого нужно измерить токи и напряжения в электрических цепях усилителя.
Особенно важны измерения в невидимом мире электронных схем при их налаживании, при «выжимании» из схемы наилучших параметров и тем более при отработке новой схемы. Здесь уже приходится измерять уровень сигнала, контролировать его форму, проверять частотные характеристики фильтров (в частности, настраивать резонансные контуры на заданную частоту), контролировать потребляемые токи, проверять уровень помех, таких, например, как фон переменного тока или собственные шумы. Для выполнения всех этих измерений создано множество самых разнообразных приборов, с некоторыми из них нам нужно познакомиться.
Основа магнитоэлектрического измерителя тока — подковообразный или чаще круглый магнит, между полюсами которого расположена квадратная катушка, как ее называют, рамка (Р-173;1). Рамка закреплена так, что может легко поворачиваться, но при этом ей приходится преодолевать сопротивление пружин. Если пропустить по рамке ток, то ее собственное магнитное поле, взаимодействуя с полем постоянного магнита, будет стараться повернуть рамку. А пружины будут сопротивляться такому поворачиванию. И в итоге угол, на который повернется рамка, определится интенсивностью ее магнитного поля, а значит, величиной тока: чем больше ток, тем сильнее магнитное поле рамки и тем на больший угол она поворачивается, преодолевая сопротивление пружин.
Р-173
Основная характеристика амперметра, в том числе и магнитоэлектрического, это его чувствительность — величина тока, который отклоняет стрелку до конца шкалы. Ясно, что чем меньший ток нужен для полного отклонения стрелки, тем выше чувствительность амперметра. Например, прибор с чувствительностью 1 мА лучше (чувствительнее), чем прибор с чувствительностью 3 мА или, тем более, 5 мА. Наиболее распространенные приборы имеют чувствительность несколько миллиампер (это довольно низкая, плохая чувствительность), или несколько сот микроампер, или даже несколько десятков микроампер (это неплохая, высокая чувствительность). Измерители тока с учетом их чувствительности принято называть миллиамперметрами или микроамперметрами. Иногда чувствительные измерители тока называют гальванометрами — слово это, так же как и название «гальванический элемент», идет от имени итальянского врача Луиджи Гальвани; он был одним из первых исследователей электричества. Чувствительность неизвестного гальванометра легко измерить эталонным прибором (Р-173;2).
Чувствительность амперметра (миллиамперметра, микроамперметра) всегда можно уменьшить, подключив к прибору шунт, в этом случае через прибор пойдет лишь часть общего тока, или, иными словами, можно будет измерить большой ток в цепи, пропустив через сам измерительный прибор сравнительно небольшой ток (Р-173;3). Используя несколько шунтов, можно создать многопредельный амперметр, то есть такой прибор, у которого в зависимости от подключенного шунта будут разные предельные измеряемые токи (Р-173;4).
Здесь необходимо сделать два важных примечания, одно общее, оно касается всех измерительных приборов вообще, и одно частное, оно относится только к амперметрам. Начнем с общего.