Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

На первый взгляд может показаться, что в многопредельных приборах нет никакой необходимости. Действительно, зачем нужны шунты и переключатель на предельные токи 5 А, 50 А и 500 А, когда прибор с одним шунтом, измеряющий 500 А, может измерить любой меньший ток. Но попробуйте представить себе, как отклонится стрелка при измерении тока в 1 А прибором с пределом измерений 500 А: если вся шкала разбита на 100 делений, то цена одного деления 5 А и при токе 1 А отклонение составит всего 0,2 деления. Заметить такое отклонение практически невозможно. Но даже при измерении значительно больших токов, скажем 10 А или 15 А, стрелка отклонится всего на 2–3 деления и точность отсчета окажется не очень высокой. Точно так же на магазинных весах с пределом 1 килограмм не отвесишь не то что миллиграммы, но даже несколько граммов. В то же время при измерении тока 1 А прибором с пределом измерения 5 А и со шкалой, разбитой опять-таки на 100 делений (цена деления теперь уже 0,005 А, а не 5 А), стрелка отклонится на 20 делений. Словом, если хочешь одним амперметром измерять и большие и малые токи, нужно, чтобы это был многопредельный прибор с переключателем шунтов. И вольтметр должен быть многопредельным, если им нужно измерять и доли вольта, и сотни вольт.

Теперь частное примечание: схема многопредельного амперметра (Р-173;4) не просто неверна, она недопустима, в ней скрыта смертельная опасность для самого стрелочного прибора. По поводу этой опасности существует даже энергичная предостерегающая поговорка — «Не оставляй прибор без шунта!», из которой следует спокойная рекомендация: «Подключай прибор к шунту, а не шунт к прибору». Понять сущность рекомендации нетрудно: если на какой-то момент прибор останется в цепи без шунта, то по прибору пойдет весь измеряемый ток (представьте себе — по прибору, рассчитанному на 1 А, идет ток 500 А), прибор выйдет из строя, скорее всего, «сгорит» рамка. Вот почему даже на короткое время переключения шунтов прибор нельзя оставлять включенным в цепь, прибор должен появляться в цепи только после того, как там уже есть шунт. Это правило проще всего реализуется в схеме Р-173;5, которая называется универсальным шунтом — этот шунт всегда подключен к прибору и при некоторых переключениях часть шунта добавляется к Rпр, в чем, кстати, нет особой беды.

Тот, кто помнит закон Ома, легко поймет, что амперметр может измерять и напряжение, если подключить его параллельно участку цепи: ток через амперметр пропорционален напряжению (Т-37), и это напряжение легко подсчитать, зная сопротивление рамки амперметра. А можно и не подсчитывать, можно шкалу амперметра сразу разметить в вольтах, превратив его тем самым в вольтметр.

Есть, правда, одно препятствие в использовании одного и того же стрелочного прибора и для измерения тока, и для измерения напряжения. Дело в том, что сопротивление амперметра должно быть малым, а сопротивление вольтметра — большим (Р-24;2,4). Только в этом случае приборы сами не будут менять режим той цепи, в которую их включают (точнее, будут менять его незначительно). К счастью, есть выход из этого безвыходного, казалось бы, положения. В комбинированном амперметре-вольтметре используют очень чувствительный гальванометр, у которого стрелка отклоняется при токе менее одного миллиампера. Причем сопротивление рамки такое, что этот ток появляется при напряжении менее вольта. Диапазон измеряемых токов у такого прибора расширяют с помощью шунтов, а диапазон измеряемых напряжений — с помощью добавочных гасящих сопротивлений (Р-174;1). Шунты уменьшают общее сопротивление амперметра.

Теперь о добавочных резисторах. Они прежде всего увеличивают предельное измеряемое напряжение. Если стрелка гальванометра отклоняется при напряжении 1 В, а резистор подобран так, что на нем теряется еще 99 В, то прибором можно измерять напряжение 100 В. При этом гальванометру достанется 1 В, стрелка отклонится до конца, и это как раз будет означать, что к прибору (включая гасящее сопротивление) подводится 100 В. И именно эту цифру можно будет поставить возле последнего деления шкалы. Кроме своей основной работы, гасящие резисторы увеличивают общее входное сопротивление вольтметра, что как раз и требовалось сделать.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника