Читаем Эмбрионы, гены и эволюция полностью

Такой же вывод был сделан в отношении эволюции родов млекопитающих в плио-плейстоцене с применением иного подхода - определения скоростей изменения таксономических частот. В них входят скорость изменения общей частоты, например числа родов, и две скорости, определяющие общую частоту: скорость возникновения и скорость вымирания. Скорость возникновения определяется как число первых появлений в ископаемой летописи за 1 млн лет, а скорость вымирания - число последних появлений за 1 млн лет. Эти эволюционные скорости определяются легко, потому что для этого не требуется знания эволюционных линий в пределах рассматриваемой группы, а таксономическая идентификация и стратиграфическое распространение - это данные, преобладающие в палеонтологической литературе. Таким образом, для того чтобы определить скорость возникновения родов в том или ином семействе, достаточно лишь подсчитать число новых родов, появившихся в датированном стратиграфическом интервале. В 1977 г. Гингерих (Gingerich) представил данные о скоростях возникновения плио-плейстоценовых родов грызунов, парнокопытных, хищников и приматов. Во всех этих группах в течение этого времени происходила значительная радиация новых родов. Скорости возникновения были высокие: 145 родов за 106 лет у парнокопытных и 222 рода за 106 лет у грызунов. Псевдовозникновение - эволюция одного рода в другой без ветвления - позволяет объяснить только 5-20% этих скоростей. Средняя продолжительность существования одного рода грызунов равна 5,9 · 106 лет, причем половина родов сохраняется в течение примерно 2 · 106 лет. Взрывоподобную радиацию новых родов за имеющиеся для этого примерно 3 · 106 лет нельзя объяснить постепенной эволюцией. Единственная возможность совместить высокие скорости возникновения и длительное выживание - это допустить такое ветвление, при котором новые виды возникают прерывисто, а затем сохраняются на протяжении сравнительно долгого времени без дальнейших изменений.

Скорости изменения размеров

Изменение размеров представляет собой одно из наиболее часто встречающихся эволюционных явлений. В общем увеличение размеров - преобладающее направление эволюции. В таких различных группах, как фораминиферы и динозавры, известны примеры гигантов, возникших от мелких предковых форм. Однако «больше» это не всегда «лучше», и крупные животные (вроде слонов) иногда давали начало карликовым формам. Скорости изменения величины в процессе эволюции определить легко. Размеры гомологичных структур, таких как раковины, кости или зубы, у эволюционно близких организмов можно точно измерить, и, зная продолжительность периода, в течение которого произошло изменение размеров, определить его скорость. Такие измерения позволяют получить простейшую количественную меру эволюции, и их можно производить независимо от преобразований формы, которые гораздо труднее оценить количественно. Эти измерения позволяют оценить эволюционные изменения, обходя проблему объективности, возникающую при определении скоростей таксономических изменений.

Сравнения абсолютных изменений размеров обычно бесполезны, потому что в общем приходится для начала сравнивать организмы разной величины. Поэтому необходима какая-то мера относительного или процентного изменения размеров за некоторый отрезок времени, принятый за стандарт. Подобную относительную меру предложил Холдейн (Haldane, 1949). Например, если за интервал времени t средняя длина какой-либо кости или другой структуры увеличивается от x1 см до x2 см, то относительную скорость изменения можно выразить в виде

Холдейн использовал это равенство, чтобы вычислить относительное увеличение размеров, и предложил термин «дарвин» для обозначения единицы эволюционного изменения размера, равного изменению в е (2,3) раз за 106 лет. Холдейн считает, что в практических целях 1 дарвин можно примерно приравнять к изменению размеров на 0,001 за тысячу лет, что дает изменение размеров вдвое за 106 лет.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже