Смысл его, как видите, достаточно ясен. Чем больше плотность плазмы, тем больше актов слияния ядер дейтерия и трития происходит в единице объема плазмы и тем больше выделяется энергии. Если плотность частиц в плазме очень большая, то выделяемая энергия с избытком покроет затраты на осуществление реакции даже в том случае, если утечка энергии из объема плазмы будет велика, то есть если время удержания плазмы малое.
Другой сомножитель характеризует степень совершенства методов и устройств, использованных для удержания энергии плазмы в объеме. Численно он равен времени, в течение которого вся энергия, запасенная в плазме (конечно, без учета энергии нейтронов), уйдет из ее объема. Если этот показатель велик и энергия из объема плазмы почти не теряется, то даже при малой величине энерговыделения, то есть малой плотности плазмы, этой энергии будет достаточно для поддержания необходимой температуры плазмы в 100–150 миллионов градусов. Очевидно, чтобы термоядерная установка служила для производства полезной энергии, в объеме ее плазмы должно «вырабатываться» энергии в 4–5 раз больше потерь и затрат. В этом случае критерий Лоусона должен быть равен, скажем, 5*10^14. Так чего же достигли термоядерщики в своих установках?
За годы, прошедшие с дней первых экспериментов, почти в каждой новой установке типа Токамак удавалось повысить температуру плазмы. Сейчас она уже около 60 миллионов градусов.
Каждая новая установка была и новым шагом в познании тайн плазмы, и шагом по пути достижения критерия Лоусона. Сначала 10^10, затем рост в 10 раз, затем еще в 10, и вот уже получена величина 2*10^13.
Ученые все ближе и ближе подбираются к желанной цели, к величине 10^14, хотя каждый последующий шаг становится все труднее и труднее.
Когда же придет победа?
Директор отделения физики плазмы академик Б. Кадомцев считает, что в начале 80-х годов на установках типа Токамак будет достигнута минимально необходимая величина критерия Лоусона и мы получим плазму с необходимыми параметрами. К этому времени в Принстонском университете в США будет запущена система ТФТР — установка типа Токамак. В Японии надеются получить желаемое на «Джи-ти-60». В организации Евратом будет запущен Токамак «Джет».
Все эти установки похожи друг на друга и в то же время различны, и задачи на них будут выполняться разные. На японской, например, будут проводиться в основном физические исследования плазмы; у американцев главная цель — получить интенсивную термоядерную реакцию. «У нас в ИАЭ, говорит Б. Кадомцев, — плазма с необходимыми параметрами будет получена на следующей физической модели, Т-15».
Кстати, для нее будет использована система энергоснабжения от Т-10. Чтобы на установке Т-15 получить магнитные поля необходимой величины, будут использованы катушки со сверхпроводниками, охлаждаемыми жидким гелием. Такая система уже проверена в ИАЭ на модели Т-7 меньшего объема. Значит, следующий шаг ясен. Через несколько лет будет осуществлена физическая демонстрация управляемой термоядерной реакции.
Но это еще не все. Впереди основная цель — первый энергетический термоядерный реактор. Когда он будет создан?
Не будем спешить с ответом. Сначала посмотрим, как он может выглядеть.
UWMAK-II
К нынешним дням разработано несколько проектов реакторов, проектов, во многом основанных на еще не проверенных идеях. Им придумано даже специальное название: «концептуальные проекты». Действительно, пока еще невозможно с достаточной точностью определить, при каких условиях будет осуществлена даже их физическая демонстрация. Между тем для правильного выбора пути в дальнейших исследованиях, оценки проблем, которые возникнут впереди, и, конечно, экономики, необходимо понять, как будут выглядеть будущие станции. Именно поэтому такие проекты-схемы, во многом основанные на еще не проверенных идеях и предположениях, и получили название концептуальных.
Вот передо мной один из таких проектов: UWMAK-II. Выполнен он в отделении энергетики Висконсинского университета. Начальные буквы его названия из названия университета; МАК — это конец слова «Токамак», дань советскому проекту. Римская цифра «два» означает, что это вторая версия.
Перевернем несколько страниц этого солидного тома и ознакомимся с основными параметрами установки.
Сердце ее, электрической мощностью 1700 мВт, — камера-бублик, в которой находится плазма. Внешний диаметр камеры — 35 метров, высота — 12. Только при таких размерах получается необходимая мощность термоядерной реакции и существенно возрастает время удержания энергии.