Читаем Энергия будущего полностью

При термоядерной реакции в плазме, состоящей из дейтерия и трития, развивается температура 100–120 миллионов градусов и выделяется энергия термоядерного синтеза в виде кинетической энергии ядер гелия и нейтронов. В последних — основная ее часть. Чтобы удержать нейтроны, камера-бублик окружена бланкетом — слоями графита, бериллия, лигия. Пролетая через стенку камеры, нейтроны соударяются с ядрами вещества бланкета и отдают им свою энергию, которая переходит в тепловую форму. Гелий, циркулирующий между слоями бланкета, переносит тепло в парогенератор, затем энергия пара в турбогенераторе преобразуется в электроэнергию.

Перевернув еще несколько страниц проекта, увидим главу, посвященную режимам пуска и работы реактора.

При пуске в камеру вводят почти в равном соотношении дейтерий и тритий. Для их разогрева используется омический нагрев. При подаче напряжения во вторичную обмотку трансформатора в первичной, роль которой выполняет плазма бублика, возникает ток, разогревающий эту плазму. Хотя на этот способ разогрева возлагались большие надежды, необходимую температуру получить оказалось невозможно: выше 10–15 миллионов градусов она не поднималась. При дальнейшем разогреве омическое сопротивление плазмы падало настолько, что никакое увеличение тока не помогало: температура плазмы не увеличивалась.

Множество идей и исследований было посвящено проблеме догрева плазмы до термоядерной температуры. По-видимому, наиболее удобным и эффективным способом является впрыскивание в плазму потока ускоренных нейтральных атомов дейтерия. Именно на нем остановились проектанты UWMAK-II. Вот принцип его работы.

На ускорителе-инжекторе мощностью 100 тысяч киловатт ионы дейтерия разгоняются до энергии в 750 тысяч электронвольт, затем в специальном устройстве инжектора они нейтрализуются и в течение 10 секунд впрыскиваются в камеру-бублик. При этом плазма в бублике разогревается до 80 миллионов градусов. Дальнейший ее разогрев до 100–120 миллионов градусов идет за счет термоядерной реакции, и реактор развивает полную тепловую мощность 5 тысяч мВт. В таком режиме его работа продолжается около 90 минут, за которые выгорают атомы дейтерия и трития. Вследствие появившихся в камере атомов гелия, а также частично атомов других элементов, выбитых из стенок камеры, реакция затухает, реактор останавливается, и начинается пятиминутный цикл перегрузки топлива и очистки камеры. В течение этих пяти минут парогенератор продолжает работать, а турбогенератор вырабатывать электроэнергию. Происходит это потому, что в течение 90 минут работы установки часть энергии не превращали в электричество, а накапливали в виде тепла в специальных натриевых аккумуляторах. В пятиминутный перерыв разогретый в аккумуляторах теплоноситель натрий отдает свою энергию паровому контуру.

Итак, за пять минут нужно очистить камеру реактора от загрязняющих плазму веществ, заполнить ее свежей смесью дейтерия и трития и вновь его запустить.

Делается это так.

В действие включаются все 96 вакуумных насосов и создают в камере нужной степени вакуум. Теперь нужно ввести смесь горючего. В отношении дейтерия проблем особых нет. Его запасы практически безграничны.

В составе обычной воды имеется 0,016 процента тяжелой, а в ней и содержится дейтерий. Трития же в природе не существует. Его нужно всякий раз производить.

Наиболее удобный способ — облучение лития нейтронами. В этой реакции образуются гелий и тритий.

На первый взгляд кажется, что в термоядерном реакторе сделать это очень просто, использовав высвобождающиеся при синтезе нейтроны. Но проделать это очень не легко. Ведь на каждый нейтрон обязательно нужно получить не менее одного атома трития, а с учетом потерь- даже несколько больше одного. Однако беда в том, что не все нейтроны поглотятся литием, ибо он располагается за стенкой камеры, значит, часть нейтронов поглотится самой стенкой, часть, кроме того, в различных других конструкциях, а часть вообще вылетит из реактора. Короче, нужного количества трития в самом реакторе не получить. Как же быть?

Выход все же был найден. В бланкете реактора, кроме лития, поместили бериллий. Он и помог размножать нейтроны. Ведь если нейтрон, обладающий большой энергией, попадает в ядро бериллия, то в нем возможен и такой ход реакции, при которой из ядра вылетают два нейтрона; два — вместо одного! А это то, что и надо.

Так удается получать в реакторе достаточное количество трития. Дальше дело проще.

Из бланкета тритий поступает на очистку. А затем вместе с дейтерием направляется в камеру. На этом завершается полный цикл работы реактора. Для разогрева плазмы вновь подается ток, и цикл повторяется.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика