Наземная отработка алгоритмов наведения и программного обеспечения комплекса автономного управления, реализующих задачи управления в штатном полете и в нештатных ситуациях, была проведена на исследовательских и комплексных стендах. При этом наряду с традиционной технологией тестирования программы (использование контрольных примеров) была внедрена и широко использовалась технология отработки программного обеспечения системы управления в замкнутой схеме исследовательского стенда.
Отработка программного обеспечения системы управления в замкнутой схеме исследовательского стенда, так называемый "электронный пуск", проводилась на основе использования штатного модуля программного обеспечения системы управления, модели объекта управления, реализующего в том числе возмущенное движение, и сервисных программ автоматической интегральной оценки основных характеристик (выполнение заданных ограничений, точность попадания отдельных элементов ракеты-носителя в заданные районы отчуждения, точность выведения на орбиту, параметры системы стабилизации). На комплексном стенде проводилась отработка сопряжения программного обеспечения системы управления с реальной аппаратурой. Разработанные алгоритмы наведения обеспечили высокие показатели при пусках ракеты-носителя "Энергия" N6СЛ.
Научно-техническая проблема создания аппаратуры средств аварийной защиты двигателей состояла в необходимости разработки эффективной системы управления двигателями и их элементами, обладающей адаптивностью к изменениям состава контролируемых параметров аварийности и алгоритмам контроля, необходимым быстродействием, обеспечивающим предотвращение развития аварии, надежностью охвата всех параметров аварийного состояния двигателя и недопущения ложного отключения нормально работающих двигателей.
Проблема создания комплекса аппаратуры средств аварийной защиты двигателей решена путем разработки датчиковой и преобразующей аппаратуры, применения бортовой цифровой вычислительной машины и разработки комплекса алгоритмического и программного обеспечения, предусматривающего гибкую настройку состава контролиpyeмых параметров аварийности и порогов контроля посредством ввода массива формулярных данных двигателей в составе данных на пуск при предстартовой подготовке ракеты-носителя.
Проблемы, связанные с созданием системы электропитания блока второй ступени, обусловлены особенностями технических требований к этой системе, основными из которых являются:
- электропитание бортовой аппаратуры блока второй ступени при всех видах испытаний на всех рабочих местах и в полете;
- обеспечение необходимого качества электропитания (отсутствие всплесков, провалов, пульсации напряжений) для большого количества разнородных потребителей (цифровой вычислительный комплекс, электронная аппаратура, мощные потребители), питающихся от единого источника ограниченной мощности.
В результате анализа вариантов возможных технических решений была выбрана турбогенераторная система электроснабжения на основе четырех турбогенераторных источников постоянного тока (модулей), работающих параллельно на общую нагрузку.
Турбогенераторный источник должен был обеспечивать возможность работы на различных рабочих телах в широком диапазоне изменения температур, давлений и расходов, значительный ресурс работы, высокую удельную мощность (24 кВт при массе 330 кг).
Созданный турбогенераторный источник постоянного тока работал с приводом воздухом, азотом, водородом и гелием. С целью упрощения конструкции и снижения массы системы газовые тракты модулей для всех видов рабочих тел были совмещены, что позволило также исключить переключение при переходе с одного рабочего тела на другое. Радиально-кольцевая структура распределения электроэнергии от единой системы электроснабжения управлялась бортовой цифровой вычислительной машиной.
Для решения проблемы создания системы сбора, обработки и выдачи контрольной информации созданы аппаратные средства сбора и преобразования контрольной информации, формирования потоков цифровой информации, передаваемых в виде последовательных кодов параллельно в систему измерений и в информационно-распределительную систему.
Проведенные научно-исследовательские работы в рамках эскизного, технического проекта и на этапе выпуска рабочей документации позволили создать комплекс автономного управления ракеты-носителя на базе многомашинного вычислительного комплекса, обеспечивающего необходимое взаимодействие системы управления блока второй ступени, блоков первой ступени и наземной аппаратуры при проведении электрических проверок, решении задач предстартовой подготовки и задач управления в полете.
На базе всесторонней автоматизации процессов проектирования, использования совершенных методов проектирования, проведения теоретических и экспериментальных исследований было создано высоконадежное программное обеспечение бортового и наземного цифровых вычислительных комплексов. Были решены проблемы создания: