Получаемые при этом результаты хорошо согласуются с экспериментальными данными. Учитывая, что отдельные блоки ракеты-носителя ракетной схемы "Энергии" представляют собой оболочечные конструкции большого удлинения, практически аналогичные многоблочным ракетам-носителям, существует возможность решения задач, связанных с расчетом всего пакета на основе балочных представлений. Именно поэтому балочный подход нашел применение при разработке динамических схем.
В основу экспериментального исследования температурного нагружения положено то, что конкретные температурные режимы конструкции могут быть представлены как комбинации "единичных" расчетных случаев, а температурные нагрузки, соответствующие данному температурному режиму, могут быть получены суммированием температурных нагрузок от единичных случаев. На основе подобного подхода разработана методика оперативной оценки температурных нагрузок, в соответствии с которой была реализована специальная система измерений на стендовом варианте ракеты - 5С.
Длительный срок эксплуатации этой ракеты обеспечил возможность проведения многократных замеров, а большая программа работ - возможность получения значительных перепадов температур.
При создании системы измерений были проведены специальные мероприятия для повышения точности и стабильности результатов на всем периоде эксплуатации. Полученные результаты подтвердили правильность решений и подходов, принятых при расчетах температурных нагрузок, и создания системы измерений.
Введение данной системы измерений в сочетании с разработанной методикой оперативной оценки температурных нагрузок позволило обеспечить контроль за уровнем нагружения межблочных связей и опорных отсеков боковых блоков на наиболее опасных (с точки зрения температурного нагружения) этапах наземной эксплуатации.
И опять же надежность двигателей
По результатам анализа статистических данных аварийных пусков ракет с жидкостными двигателями установлено, что число отказов, приходящихся на двигательные установки, доходит до 41 % от общего количества аварий. Это естественно, понимая, что двигательная установка в ракетном техническом комплексе - это мощная энергетическая система, функционирование которой связано с реализацией сложных физических процессов. Это мощный огневой поток и высоконагруженные гидромеханические агрегаты.
Стремление достичь высокого уровня надежности двигателей диктуется необходимостью обеспечения должной степени безопасности системы в пилотируемом варианте и достижения минимального ущерба, связанного с потерями при возможных аварийных исходах пусков в беспилотном варианте.
Размер ущерба для таких систем, как ракета-носитель "Энергия", может быть ощутимо велик из-за большой стоимости ракеты и, в том числе, большой стоимости двигателей.
Особенностью двигательных установок тяжелых ракет-носителей из-за большой суммарной тяги маршевых двигателей, измеряемой несколькими тысячами тонн, является их многоблочность. Существует некоторое оптимальное количество двигателей в связке, которое определяется, с одной стороны, возможностью современной технологии создания высоконадежного двигателя большой размерности, а с другой - понижением надежности связки двигателей малой размерности с ростом их числа в составе пакета.
Известно, что применение в технической системе элементов более одного ведет к снижению общей надежности. Применяемые в ракетных системах связки однородных двигателей или их любые композиции, естественно, имеют надежность тем выше, чем меньше двигателей в связке, чем выше надежность единичного двигателя, чем больше степень резервирования и дублирования. Поэтому первоочередной задачей при создании носителей с многодвигательными установками является обеспечение высокой надежности. В настоящее время применительно к техническим проблемам эта задача решается, в частности, за счет широкого использования методов системного и регрессивного анализа, а также методов вероятностной механики разрушения машин на всех этапах создания подобных систем, то есть на этапах проектирования, конструкторской отработки, серийного производства и эксплуатации.
Процесс доведения двигателей РД-170 и РД-0120 на этапе проектирования, экспериментальной отработки до соответствующего уровня и его последовательного достижения организовывался по каждому двигателю соответствующими комплексными планами обеспечения надежности. При этом разработчики ракеты-носителя и двигателя исходили из поиска оптимального соотношения роста надежности и затрат на разработку и доводку.