На первом этапе были обобщены неисправности и отказы ранее разработанных двигателей и на этой базе выбраны параметры контроля двигателя - давление, температура, вибрация, пульсация, сформулированы алгоритмы их преобразования и логической обработки, которые послужили основой объектовой системы. По этим алгоритмам были спроектированы и разработаны стендовые аппаратурные модули. Отрабатывались различные варианты датчиков, их надежность, метрологические характеристики. Уже на этом этапе система показала высокую эффективность при многочисленных незапусках запальных устройств, обеспечив сохранность двигателя. При разрушении агрегатов подачи защита, как правило, не обеспечивала сохранности двигателя, но позволяла выключить его с минимальными разрушениями стенда.
На втором этапе был проведен структурно-функциональный анализ конструкции агрегатов двигателя РД-0120 и результатов их доводочных испытаний, обобщенный в виде перечня аварийных ситуаций и способов выхода из них. Были проанализированы результаты отработки алгоритмов по первому этапу на стендовой аппаратуре и на основании этого анализа определены изменения в логике функционирования системы, направленные на сокращение числа контролируемых параметров при соответствующей компенсации за счет усложнения алгоритмов и увеличения их гибкости. При этом был исключен недостаточно эффективный контроль параметров давления и разработана новая версия алгоритмов контроля, включающая следующие параметры: обороты турбины, бустера горючего, температура в газогенераторе, перепады давлений в разделительной полости турбонасосного агрегата и осевое перемещение ротора. Все это позволило повысить эффективность системы при одновременном ее упрощении. Что касается отработки системы в целом, то на этом этапе были решены вопросы привязки штатной аппаратуры к стенду.
На третьем этапе были отработаны характеристики системы на базе объектовой аппаратуры. На этом этапе разработана и отработана технология настройки защиты и системы мониторинга программно-методического обеспечения, а также подтверждены заданные показатели работоспособности и эффективности алгоритмов.
Примером высокой эффективности системы может служить аварийное выключение двигателя из-за незапуска бустера горючего при огневых стендовых испытаниях блока Ц, которое дало возможность избежать серьезной аварии на стенде, провести ремонт двигателя и успешно повторить испытание. За период доводки почти 90 аварий двигателей было предотвращено благодаря использованию системы защиты, что дало значительную экономию времени и средств.
Система аварийной защиты двигателя РД-170 и ее стендовый аналог - система выключения двигателя - в ходе отработки сыграли важную роль как средства предотвращения больших разрушений самого двигателя и стенда. Кроме того, эти системы расширили возможности анализа причин аварий при сохранении конструкций двигателей. Состав средств систем включил как традиционные измерения давлений, температур, оборотов и (на отдельных испытаниях) пульсации, так и новые - осевых и радиальных перемещений вала и осевых сил.
Для обеспечения высокой надежности функционирования и уменьшения вероятности выдачи ложного сигнала используется контроль по ограниченному числу параметров, имеющих интегральный характер, применительно к техническому состоянию систем двигателя с помощью алгоритмов, заключающихся в слежении за моментом выхода параметра за предельно допустимые значения.
Обороты турбонасосного агрегата контролируются по верхнему и нижнему пределам: в случае выхода параметров за пределы система выдает команду на аварийное выключение двигателя. Контроль по верхнему предельному значению преследует цель фиксации состояния, связанного с разрушением материальной части, по нижнему пределу - нормального хода запуска двигателя и своевременной фиксации спада режима при отказе какой-либо системы.
Контроль температуры газа за турбиной проводится только по верхнему предельному значению. Параметр более чувствителен к ситуациям, связанным с ростом температуры среды, приводящему к возгоранию в окислительном тракте.
Использование сплавов на основе никеля практически решает проблему защиты от возгорании в жидкостных окислительных трактах. Однако подшипники турбонасосного агрегата, в том числе и кислородного, изготавливаются из стали. В этих условиях чрезмерные осевые нагрузки на упорный подшипник могут вызвать его повреждения с последующим возгоранием и разрушением агрегата. С целью упреждения аварии предусмотрен контроль осевого положения.
На отдельных этапах рассматривался ряд других параметров типа вибрации и углов поворота приводов регулирующих органов. Вырабатывались алгоритмы контроля как по текущему уровню параметров, так и по величине их производных по времени. Рассматривались варианты адаптивного контроля.