Схема возвращения блоков А
. Примерно на 135-й секунде полета происходит отделение параблоков на высоте порядка 50 км, при этом скорость движения параблоков немного более 1800 м/с. На 150-165-й секундах происходит разделение блоков и их разведение на высоте 65-70 км, скорость - 1760-1720 м/с. Перед входом в плотные слои атмосферы на высоте порядка 80 км при скорости движения 1650 м/с включается система ориентации. Блок в этой связи оснащается системой управления и газо-реактивной ориентации. Блок направляется в атмосферу носовой частью, которая имеет соответствующую теплозащиту. Блок входит в плотные слои атмосферы со скоростью 1780 м/с, предварительно задействовав тормозной парашют. С 285-й по 450-ю секунды происходит движение с тормозным парашютом и снижение до высоты порядка 5 км. Скорость на этом участке уменьшается до 70 м/с. На этой высоте вводится основной многокупольный парашют. Силовые стропы закреплены на заднем торце блока. Блок снижается носиком по направлению движения, скорость падает до 30 - 20 м/с. На высоте 3-4 км происходит "перецепка" парашюта: узел крепления парашюта смещается к центру тяжести блока. Блок приземляется в горизонтальном положении со скоростью 13-19 м/с. Амортизационные стойки устанавливаются в рабочее положение. На высоте 30-50 м по команде системы управления, следящей за высотой, включаются двигатели мягкой посадки. Посадка осуществляется через 11-12 мин. после старта ракеты.При разработке блока А на стадии дополнения к техническому проекту (1979 г.) было выявлено, что существовавшее на тот период представление о схеме спасения не удовлетворяет требованиям по массовым характеристикам. Схема оказалась сложной в конструктивном отношении, недостаточно надежной и не обеспечивала должного управления блоком после отделения. Поэтому, после дополнительных проработок и обсуждений с предприятием Минавиапрома, было принято решение о проведении исследовательских работ по разработке сверхзвукового парашютного тормозного устройства. Предусматривалось провести исследование технологических и конструкционных свойств материала СВМ, из которого намечалось изготавливать парашюты, и летную отработку модели на экспериментальном изделии Т6К.
Работы, проведенные в НПО "Энергия", показали, что проблему повышения термостойкости ткани можно решить нанесением на этот материал композиционного теплозащитного состава на основе водосодержащих микрокапсул. Были изготовлены образцы такой ткани и проведены испытания в ЦАГИ.
В конструкции блока А, готовившейся в полет, уже были заложены элементы парашютной системы посадки. После полета специалисты, особенно иностранные, будут постоянно задавать вопрос - "что это за конструкторские нагромождения на блоке в районе носовой и хвостовой частей?" Это - два встроенных контейнера для размещения парашютов, средств приземления и системы управления. В первых полетах они были заполнены измерительной аппаратурой.
Тогда, в период поиска лучшего решения, нам стало ясно, что следует искать кардинальные пути и варианты. Усложняло создание средств возврата блоков А то, что посадка этих блоков должна была осуществляться на твердый грунт и при практически нулевых перегрузках. За это надо было платить весом полезной конструкции ракеты. Предстояли исследования других вариантов - не простых, а более эффективных.
Аварийный слив окислителя
Важнейшей проблемой при создании ракеты-носителя "Энергия" явилось непременное обеспечение безопасности орбитального корабля с экипажем на протяжении всего участка выведения. Особенно актуальной эта проблема становится на участке полета первой ступени ракеты при возникновении нештатной ситуации, связанной с отказом маршевого жидкостного ракетного двигателя РД-170 одного из боковых блоков первой ступени или аварийного выключения его с помощью специальных средств аварийной защиты двигателя.
С такой ситуацией в процессе полета ракеты-носителя приходится считаться, так как надежность двигателей не является абсолютной и на первых ракетах-носителях она, как правило, еще не достигает заданных величин.
Решение задачи обеспечения безопасности орбитального корабля осложняется тем, что полет на участке первой ступени характеризуется сравнительно малыми скоростями и высотами, отрезком траектории с большими скоростными напорами и большими управляющими моментами, которые должны создавать двигатели блоков первой ступени. Важен и тот факт, что штатная система отделения орбитального корабля рассчитана на отделение от автономного блока второй ступени после выключения его двигателей в условиях очень малых скоростных напоров и после обязательного отделения блоков первой ступени.