Принцип работы системы переохлаждения заключается в следующем: в охладителе, стоящем на линии подачи в блок второй ступени, кислород за счет теплообмена с кипящим под атмосферным давлением азотом охлаждается до температуры -195 ╟С, после чего идет на заправку блока. В охладителе, стоящем на линии заправки блоков первой ступени, кислород охлаждается до такой же температуры, а затем смешивается с потоком жидкого кислорода, поступающим по байпасной линии, в результате чего нагревается до температуры -190 ╟С и поступает на заправку блоков первой ступени. Температура жидкого кислорода на выходе из охладителя блоков первой ступени задается заранее и достигается за счет перераспределения потоков через охладитель и байпасную линию с помощью соответствующих клапанов.
В связи с необходимостью переохлаждения кислорода была решена задача обеспечения чистоты продукта. Анализ возможных способов охлаждения жидкого водорода показал, что наиболее целесообразным является охлаждение заправочного потока в теплообменнике, размещенном в ванне с жидким водородом, кипящим под вакуумом. В связи с этим анализировалось применение в система охлаждения жидкого водорода различных типов средств вакуумной откачки. При этом учитывались следующие основные требования, предъявляемые к системе:
- определенная холодопроизводительность при заданной температуре кипения в ванне охладителя;
- взрывобезопасность;
- экономическая эффективность;
- простота управления и эксплуатации;
- заданные показатели надежности.
Величина холодопроизводительности, уровень давления и температура откачиваемого газа определяет объемную производительность средств вакуумной откачки, а следовательно, их тип и количество. Откачка подогретых до нормальных температур паров водорода обеспечена наиболее высокопроизводительными средствами: осевыми, центробежными вакуумными насосами и эжекторами. Однако "теплая" откачка требует применения большого количества машинного оборудования для выполнения предъявленных к системе требований, а также значительного расхода энергии на подогрев газа, что в сочетании с большой потребляемой мощностью является неэффективным и усложняет систему из-за необходимости применения специальных теплообменных аппаратов и обеспечения теплоносителем. В связи с этим вариант системы охлаждения водорода с откачкой подогретых паров был отклонен. Указанные недостатки в значительной степени устраняются при откачке "холодных" паров. Однако, несмотря на достаточно большой ассортимент вакуумных насосов, выпускаемых отечественной промышленностью, их выбор для систем охлаждения криогенных жидкостей ограничен. Основной причиной является отсутствие надежных, высокопроизводительных насосов, работоспособных при криогенных температурах. По состоянию развития вакуумной техники на период 80-х годов, наиболее освоенными средствами откачки "холодных" паров водорода явились газовые эжекторы, в которых в качестве активного газа используется азот. Таким образом была определена схема и состав оборудования для системы охлаждения водорода.
Охлаждение подаваемого в ракету жидкого водорода решено было осуществлять в трубчатых теплообменниках двух последовательно расположенных охладителей. Хладагентом является жидкий водород, кипящий в межтрубном пространстве теплообменника при пониженном давлении. Пары водорода из парового пространства охладителей откачиваются эжекторами. Пневмогидравлическая схема позволяет обеспечить различную холодопроизводительность системы за счет включения в работу различного числа эжекторов.
Охладители представляют собой горизонтальные цельносваренные цилиндрические двухстенные аппараты со встроенными во внутренний сосуд (ванна охладителя) теплообменниками. На наружную поверхность трубок нанесено капиллярно-пористое покрытие, которое служит для интенсификации теплообмена. Теплообмен осуществляется между потоком жидкого водорода, движущимся по трубкам теплообменника, и водородом, кипящим в межтрубном пространстве при давлении ниже атмосферного.
Результаты работ со стендовыми образцами и первыми летными ракетами "Энергия" подтвердили правильность принятых в наземных системах заправки технических решений задачи переохлаждения компонентов топлива: жидкого кислорода - в процессе заправки в ванне с жидким азотом, кипящим при атмосферном давлении; жидкого водорода - в процессе заправки в ванне с жидким водородом, кипящим при пониженном давлении; горючего РГ-1 - с помощью холодильных машин. Наземные системы обеспечили заправку ракеты с заданными температурами с высокой степенью точности. Выбранные схемы переохлаждения компонентов обеспечили выполнение поставленной задачи с минимальными энергозатратами. Переохлаждение криогенных компонентов в процессе заправки без предварительного захолаживания в хранилищах существенно увеличило надежность заправочных систем, сократило сроки подготовки систем к работе с ракетой, позволило обеспечить длительное хранение с гарантией кондиционности компонентов. При этом были также решены вопросы обеспечения требуемой чистоты компонентов.