В эволюции важно быть первым. Когда у разных организмов имеются общие гены, как правило, они считаются более важными, чем гены, уникальные для конкретных видов. Уникальные гены, скорее всего, появились недавно в эволюционной хронологии, в то время как общие гены развились гораздо раньше. То, что сохраняется в течение длительного времени, намного важнее для жизни. Этому есть как минимум две причины. Первая заключается в том, что эволюция стремится избавиться от всего, что не является необходимым или не дает преимущества для выживания или размножения. Если в ходе эволюции организмы перестают нуждаться в каком-либо признаке, он перестает быть объектом отбора и в конечном счете исчезает. Вторая причина заключается в том, что новые гены и признаки должны развиваться совместно с уже существующими генами и признаками и адаптироваться к ним. Митохондрии появились в эукариотических клетках первыми. Изначально это была всего лишь одна бактерия и одна внешняя клетка. Со временем развилось ядро и другие органеллы. Как бы ни были важны эти другие органеллы, митохондрии были там первыми. Вероятно, они повлияли на развитие других частей клетки и стали незаменимыми. На самом деле без митохондрий попросту невозможна нормальная работа других элементов клетки.
Современные митохондрии
Митохондрии больше не способны воспроизводить себя вне эукариотической клетки. У человека эти органеллы перенесли бо́льшую часть своей ДНК в ядро клетки, где находится ДНК человека. Существует около 1500 митохондриальных генов, которые сейчас встроены в ДНК человека. Они отвечают за производство белков, которые необходимы для создания или обслуживания митохондрий, и эти белки являются общими для всех митохондрий в клетке. Тем не менее митохондрии не отказались от всей своей ДНК. Каждая из них по-прежнему несет в себе 37 генов. Отдельные органеллы могут использовать эту ДНК автономно – таким образом, они сохраняют некоторую степень независимости как друг от друга, так и от клетки, в которой находятся. Это крайне необычное явление в биологии, и его цели остаются предметом споров. Как бы то ни было, суть в следующем: митохондрии и человеческие клетки теперь на 100 % привязаны друг к другу. Они попросту не могут друг без друга выжить.
Митохондрии очень маленького размера. В среднем в каждой человеческой клетке их количество составляет от 300 до 400 (3). Таким образом, во всем человеческом организме насчитывается порядка 10 миллионов миллиардов митохондрий. Несмотря на свой крошечный размер, они составляют около 10 % веса нашего тела.
Одна клетка с высоким уровнем обмена веществ (например, в мозге), может содержать тысячи митохондрий, при этом они составляют более 40 % объема клетки.
Митохондрии постоянно при деле. Хотя небольшое количество АТФ может вырабатываться и без них в результате гликолиза, митохондрии производят львиную долю АТФ, особенно для клеток мозга. У взрослого человека они производят около 9 × 1020 молекул АТФ каждую секунду (4). Одна группа исследователей изучила клетки мозга с помощью специальных методов визуализации и обнаружила, что один нейрон в человеческом мозге использует около 4,7 миллиарда молекул АТФ каждую секунду (5). Это очень много АТФ!
Митохондрии двигаются. Это довольно недавнее открытие, основанное на новых методах изучения живых клеток (6). Когда рассматриваешь под микроскопом мертвую клетку, то в ней ничего не движется, так что легко понять, почему исследователи даже не догадывались о возможной подвижности митохондрий. Другие органеллы, как правило, неподвижны. Было крайне неожиданно обнаружить, что митохондрии перемещаются по живым клеткам. Ссылки на видео с движущимися митохондриями вы можете найти в статье PLOS Biology в примечаниях (7). В интернете полно и других видеозаписей. Внутри клетки существует сеть микротрубочек и нитей, которую часто называют