Короче говоря, экзотермическая реакция соединения водорода и кислорода в принципе может продолжаться спонтанно, а эндотермическая реакция разложения воды — не может.
Однако, к огорчению Бертло, это правило оказалось недостаточно всеобъемлющим. Все экзотермические реакции действительно происходят спонтанно, а все эндотермические, как правило, не происходят спонтанно. Однако все же есть несколько реакций, которые являются эндотермическими и при этом все же происходят спонтанно. Лучшим примером такого рода реакций является растворение некоторых веществ в воде. Если аммиачную селитру высыпать в воду, то она спонтанно растворится, хотя АН этого процесса и будет положительна. При этом происходит набор химической энергии, а тепловая — извлекается из воды, которая становится ледяной на ощупь. И не важно, скольким количеством примеров подтверждается теория Бертло, для того, чтобы опровергнуть ее, достаточно и единственного исключения.
Однако на самом деле ущербность теории Бертло доказывается не только фактом наличия нескольких опровергающих ее исключений. Против нее имеются и некоторые более тонкие возражения, подводящие нас к идее «химического равновесия».
Реакции, которые вызывают наибольший интерес термохимиков — реакции горения, — кажутся однонаправленными. То есть углерод и кислород соединяются навсегда для образования углекислоты, водород и кислород — для образования воды, соединения, имеющие в своем составе и углерод, и водород, соединяются навсегда с кислородом для образования углекислоты и воды. Более того, никогда вода в сколь-либо заметных количествах не разлагается на водород и кислород, а углекислота — на углерод и кислород. И вода никогда не соединяется с углекислотой для образования этилена или других углеводородов. Такие однонаправленные реакции также называют необратимыми.
Однако положение дел обстоит таким образом далеко не со всеми химическими реакциями. Например, посмотрим на одну из реакций с участием водорода и йода. При обычной температуре йод представляет собой синевато-серое твердое вещество, но плавное нагревание его приводит к появлению фиолетового газа, а при температуре выше 184 °С он существует исключительно в виде газа. В газообразном состоянии йод состоит из двухатомных молекул (I2
).Если же смешать йод с водородом при температуре, скажем, 445 °С, будет образовываться соединение йодоводород (HI):
Однако в соединение вступают не весь йод и не весь водород. Сколько бы времени ни протекала реакция, все равно часть йода и часть водорода не будут в ней участвовать.
Если же, наоборот, произвести некоторое количество чистого йодоводорода и нагреть его до тех же 445 °С, то он начнет разлагаться на йод и водород:
И опять же, независимо от того, сколько времени протекает реакция, распадется не весь йодоводород. На самом деле, что бы мы ни взяли изначально — смесь ли йода и водорода или йодоводород, в итоге мы получим одно и то же соотношение: около 80% йода и водорода будут находиться в соединенном виде HI; около 20% — в разрозненном. Такие реакции, способные протекать в обоих направлениях, называют обратимыми.
Очевидно, происходит следующее: водород и йод, будучи смешанными при высокой температуре, быстро соединяются, образуя йодоводород. Образуемый йодоводород имеет тенденцию к распаду при такой температуре, но так много йода и водорода задействовано в процессе соединения, а йодоводорода еще так мало, что наблюдателю заметен только эффект соединения, и количество йодоводорода в эксперименте только увеличивается.
Однако по мере увеличения количества йодоводорода все больше и больше соединившихся молекул начинает распадаться, а одновременно с этим количество все еще продолжающих объединяться молекул водорода и йода сокращается, и скорость образования йодоводорода снижается. По мере того как скорость распада йодоводорода возрастает, а скорость образования — снижается, должен наступить момент, когда эти два процесса уравновесят друг друга. Эксперимент показывает, что этот момент наступает при соотношении йодоводорода к смеси йода и водорода 80: 20. Дальше никаких изменений мы уже не увидим, и не потому, что все процессы на этом останавливаются, а потому, что одновременно происходят два противоположно направленных и взаимно уравновешивающих друг друга процесса.
Теперь предположим, что изначально у нас имеется не смесь, а чистый йодоводород (рис. 11). Некоторые его молекулы начинают распадаться сразу же. По мере накопления водорода и йода в общем объеме в этих газах начинают проявляться тенденции к воссоединению, сила которых возрастает по мере накопления самих газов. И наоборот, по мере того, как количество молекул йодоводорода в общем объеме снижается, скорость распада оставшихся молекул также уменьшается. И опять же, как показывают наблюдения, в итоге наступает некий момент равновесия.