Читаем Энергия жизни. От искры до фотосинтеза полностью

Когда два противоположно направленных процесса уравновешивают друг друга, это называется «состоянием химического равновесия». Само слово «равновесие» рисует в воображении картинку некоего замершего под действием разносторонне направленных сил положения дел. Это — статическое равновесие, но химическое равновесие — совсем не такое. Оба противоположно направленных процесса происходят со всей доступной им скоростью, но при этом аннулируют эффект друг друга. Это — динамическое равновесие.

Рис. 11. Отношения между скоростью реакции и химическим равновесием 

Ситуация химического равновесия, такого как в нашем примере с водородом и йодом, обычно обозначается таким образом: двумя противоположно направленными стрелочками:

Н2 + I2 ↔ 2HI.

Таким же образом можно записать и любое количество других реакций.

Ключевой момент здесь следующий: каждой реакции, при определенных условиях, присуща своя ΔН. Обратной реакции, при тех же условиях, присуща та же самая ΔН, но с обратным знаком. Об этом свидетельствует закон Лавуазье—Лапласа и, что еще важнее, первый закон термодинамики.

Следовательно, в любой обратимой реакции, если реакция в одну сторону является экзотермической, то реакция в противоположную сторону должна быть эндотермической. Применительно к водороду, йоду и йодоводороду распад йодоводорода на водород и йод — экзотермическая реакция с ΔН -6 килокалорий. Соответственно соединение водорода и йода — реакция эндотермическая, с ΔН +6 килокалорий.

Если бы теория Бертло, согласно которой спонтанными могут быть только экзотермические реакции, была верна, то йодоводород сам по себе мог бы только распадаться и не соединяться обратно. Однако наблюдения показывают совсем иную картину. Йодоводород на самом деле соединяется, причем с большим размахом, чем распадается.

Если бы Бертло был прав, такого понятия, как обратимая реакция, вообще не существовало бы — все реакции были бы однонаправленными. Поскольку наблюдения прямо опровергают это предположение, то все идеи Бертло были очень быстро преданы забвению. Вообще непонятно, почему Бертло сам не увидел очевидного и не удержался от публичного высказывания своих предположений, — но легко быть крепким задним умом.

* * *

Итак, мы продолжаем пребывать в поисках химического потенциала. Итак, один фактор, вроде бы имеющий влияние на направление, принимаемое обратимой реакцией, — это процентное соотношение соединений в общем объеме. Если количественно преобладают водород и йод, то всеохватывающее значение примет тенденция к соединению. Систему можно сбить с положения устоявшегося химического равновесия, если просто добавить в нее либо йодоводород либо смесь водорода и йода.

Первым, кто четко сформулировал это наблюдение, был французский химик Клод Луи Бертолле в 1803 году (не путать с Бертло, которого я упоминал в предыдущей части — тот жил на полвека раньше!).

Примерно с полвека теория Бертолле о влиянии массы на направление реакции не находила общего признания химиков, хотя один за другим они пробовали ее на зуб. Наконец, в 1863 году норвежские химики Като Максимилиан Гульдберг и Петер Вааге тщательно разработали этот вопрос и сформулировали правило, которое мы сейчас называем «законом сохранения массы». К сожалению, они опубликовали свою работу на норвежском языке, и ведущие немецкие и французские ученые смогли прочитать ее только пятнадцать лет спустя.

Яснее всего продемонстрировать важность этого закона можно, если представить себе обратимую реакцию в общем случае, без указания конкретных реагирующих веществ. Ее можно записать так:

А + В С + D.

Предположим, реакция осуществляется слева направо, тогда А и В переходят в С и D. Но для этого надо, чтобы эти два вещества встретились. Чем их больше в общем объеме, тем легче им встретиться и тем быстрее протекает этот процесс. Важно не общее количество, а количество в определенном объеме, то есть концентрация вещества. Можно провести такую аналогию: для юной леди, стремящейся выйти замуж, гораздо больше вариантов для выбора можно найти в сельском штате Невада, чем в массачусетском городке Холиоке, но вот беда — все кандидатуры в Неваде разбросаны по территории штата, и получается, что в Холиоке концентрация выше, а значит — выше и шансы подобрать себе подходящий вариант.

Если концентрация А удваивается, то вместе с ней удваивается и частота встреч молекул А и В, а соответственно — скорость их реакции между собой. Аналогичным будет результат удваивания и концентрации В. Если одновременно удвоится концентрация и А и В, то частота встреч молекул этих двух веществ, а значит, и скорость реакции возрастет вчетверо. Соответственно скорость реакции соединения этих веществ равна произведению концентрации одного на концентрацию второго. Для обозначения концентрации некоего вещества принято изображать его заключенным в квадратные скобки, и мы можем сказать, что

скорость реакции слева направо ~ [А][В].

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука