Читаем Энергия жизни. От искры до фотосинтеза полностью

Возьмем для примера реакцию соединения водорода и йода в йодоводород. В данном случае уровень свободной энергии, используемой в реакции, сравнительно невелик. Визуально это можно изобразить, как в нижней половине рис. 12, отметив значение уровня свободной энергии С смеси чистого водорода с чистым йодом лишь немного выше уровня свободной энергии D чистого йодоводорода, образуемого в ходе полного соединения водорода и йода.

Первое, что хочется сделать в подобной ситуации, — это снова провести прямую линию от одной точки до другой, так чтобы получилась еще одна наклонная плоскость, угол наклона которой был бы меньше, чем предыдущей, но в остальном аналогичная первой. Тогда реакция снова «катилась бы под уклон» — от смеси водорода и йода до йодоводорода, и образовавшийся в ее ходе йодоводород так и оставался бы неразлагаемым «у подножия», пока с помощью приложения некоторого усилия его не подняли бы «вверх». По такой логике смесь водорода и йода отличалась бы от смеси водорода и кислорода лишь скоростью и силой реакции, но не общим рисунком ее хода.

Но мы знаем, что на самом деле это не так. Водород и йод вступают в соединение не в полном объеме, а значит — не «скатываются вниз до конца». Более того, и чистый йодоводород до некоторого уровня будет сам по себе распадаться, что соответствовало бы по нашей схеме «движению вверх». Значит, график с прямой линией был бы неправильным.

Ответ кроется в том факте, что молярная свободная энергия снижается вместе с концентрацией вещества. Если концентрация смеси водорода и йода уменьшится на 10 процентов за счет образования йодоводорода, то уровень свободной энергии смеси снижается сильнее чем на 10 процентов. Это значит, что график изменения уровня свободной энергии, начинаясь от точки С, будет опускаться сильнее, чем прямая линия.

То же самое справедливо и в отношении йодоводорода. При разложении части его уровень свободной энергии оставшейся части окажется меньше, чем можно было бы ожидать. Поэтому от точки D график изменения уровня свободной энергии тоже будет опускаться вниз.

Рис. 13. Изменения уровня свободной энергии 

Так что график будет напоминать не наклонную доску, а скорее подвесной гамак и на протяжении большей его части уровень свободной энергии будет меньше, чем на любой из крайних точек.

Этот факт надо подчеркнуть особо. Из-за зависимости молярной свободной энергии от концентрации свободная энергия заданной реакции не достигает минимума ни в одной из крайних точек, в которых реакция была бы завершена либо в одну, либо в другую сторону. Вместо этого минимум достигается в некоторой средней точке, в которой снижение концентрации всех составляющих приводит к максимальному снижению общей свободной энергии.

Следовательно, реакция, приведя к минимальному уровню свободной энергии, оказывается в положении равновесия. Более того, реакция останавливается в одной и той же точке с минимумом свободной энергии, независимо от того, с чего она начинается — со смеси йода с водородом или с чистого йодоводорода.

Поэтому для полноты аналогии с движением под влиянием силы тяжести надо представить себе не одну, а две наклонные плоскости, или, более образно — два горных склона, между которыми находится долина. Если шар отпустить с вершины С, он скатится в ту же самую нижнюю точку долины, что и в случае, если его отпустить с вершины D.

Чем меньше разность уровней свободной энергии между двумя крайними точками графика, тем ближе будет точка равновесия находиться к его середине. Чем выше разность уровней энергии между двумя крайними точками, тем ближе точка равновесия сдвигается в сторону той крайней точки, свободная энергия которой меньше.

В случае соединения водорода с кислородом точка равновесия сдвигается так далеко в сторону воды, что практически неотличима от точки, обозначающей чистую воду. В этой точке равновесия уровень свободной энергии будет, конечно, ниже, чем в точке чистой воды, но настолько неощутимо ниже, что эту разницу практически невозможно измерить (можно только высчитать из сведений о свободной энергии).

Это значит, что в замкнутой системе водород и кислород никогда не соединятся в воду полностью — всегда будет оставаться неизмеримо малое количество свободного водорода и кислорода, не вступивших в реакцию. Более того, если изначально мы имеем чистый водяной пар, то при тех же условиях (температуре и давлении) неизмеримо малое количество этой воды будет разлагаться на водород и кислород.

С точки зрения термодинамики получается, что все реакции обратимы. Однако с практической точки зрения можно продолжать расценивать в качестве необратимых те реакции, в которых точка равновесия неотличимо близка к одной из крайних точек.


Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука