Читаем Энергия жизни. От искры до фотосинтеза полностью

Некоторые химические реакции лучше всего рассматривать именно в свете такой вот ионной независимости; тогда проще всего описывать их, сосредоточившись на одном из ионов и упуская из виду второй.

К примеру, возьмем цинк (Zn) и медный купорос, молекула которого состоит из одного атома меди (Cu), одного атома серы (S) и четырех атомов кислорода и обозначается CuSO4. Если в раствор медного купороса добавить металлический цинк, то произойдет спонтанная реакция, в ходе которой цинк войдет в состав раствора, который станет теперь раствором сульфата цинка (ZnSO4), а медь выйдет из состава раствора и выпадет в осадок в виде знакомого нам красноватого металла.

Записанное обычным образом выражение для этой реакции будет выглядеть так:

Zn + CuSO4 → ZnSO4 + Cu.

При этом создается впечатление, что сульфатная группа (SO4) отделяется от меди и прикрепляется к цинку. На самом же деле сульфатная группа ничего подобного не совершает. Изо всех компонентов системы она играет самую пассивную роль. Взглянем на происходящее, исходя из ионной картины.

Медный купорос удерживают воедино ионные связи (по крайней мере, частично), и в растворе он существует не в виде отдельных молекул, а в виде смеси ионов меди (Cu2+) и сульфат-ионов (SO2). В ходе реакции атом цинка (его можно записать как Zn0, чтобы лишний раз подчеркнуть его нейтральность в металлической форме) теряет два электрона и становится ионом цинка (Zn2+), и эти два электрона приобретает ион меди, становясь, таким образом, нейтральным атомом меди (Cu0) и оседая в этом виде.

Выражение можно записать так:

Zn0 + Cu2+ → Zn2+ + Cu0.

Эта реакция подразумевает изменение в природе ионной связи. Изначально мы имеем ионную связь между ионом меди и сульфат-ионом, а в итоге — между ионом цинка и сульфат-ионом. Изменения ионных связей подразумевают и изменение уровня свободной энергии, как и любые другие изменения химических связей. В этом случае реакция проходит спонтанно в направлении, указанном в вышеприведенной формуле, так что мы можем быть уверены в том, что при переходе от металлического цинка и иона меди к иону цинка и металлической меди уровень свободной энергии снижается.

Теперь давайте предположим, что два реагента разделены. В одной камере находится полоска цинка, погруженная в раствор сульфата цинка, в другом — полоска меди, погруженная в раствор медного купороса. Между двумя камерами — пористая перегородка, сквозь которую ионы могут проникать в обе стороны, но, при обычных условиях, очень медленно. В такой системе сами по себе обсуждаемые реакции не будут проходить в каком бы то ни было значительном объеме.

А происходит в ней следующее: атомы цинка в полоске цинка начинают терять электроны и превращаться в ионы цинка. Ионов меди, которые могли бы перехватить эти электроны, поблизости нет, так что в растворе происходит накопление «свободных электронов». Этот процесс не заходит слишком далеко, поскольку срабатывает следующий механизм: все отрывающиеся электроны, обладая одинаковым зарядом, стараются оттолкнуться друг от друга как можно дальше, создавая, таким образом, в растворе нечто вроде «электронного давления». Любому электрону, который хочет в этих условиях оторваться от атома цинка, приходится теперь преодолевать это давление, которое с отрывом каждого нового свободного электрона становится все сильнее, и так продолжается, пока электроны не перестают отрываться вообще. На этом этапе количество накопившихся в растворе свободных электронов относительно мало. То же самое происходит и в «медной» камере, поскольку атом меди тоже имеет склонность терять электроны. И все же в «цинковой» камере электронное давление выше, поскольку склонность атома цинка к потере электронов сильнее, в ней накапливается больше свободных электронов.

Теперь предположим, что полоска цинка соединена с полоской меди металлической проволокой. Тогда мы станем наблюдателями нового для нас и крайне интересного процесса. Обычные атомы по проволоке перемещаться не могут — этому мешают атомы, уже находящиеся в ней. А вот электрон — гораздо меньше и легче, чем атом. Его масса в 1837 раз меньше массы самого легкого атома (имеется в виду конечно же водород). Поэтому электрон может скользить между атомами, из которых состоит металлическая проволока. Способность электрона проходить сквозь вещество зависит от электронного строения самих атомов этого вещества. Электронная структура многих веществ — серы, стекла, резины, например, — не позволяет электронам свободно проходить сквозь них.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука