Читаем Энергия жизни. От искры до фотосинтеза полностью

Затем мы пришли к выводу, что живые существа тепловыми машинами не являются, но при этом вполне вероятно, что энергию они получают в результате процесса, сходного с горением. От этого повествование закономерно перешло к химической энергии и к тому, что она представляет собой с точки зрения законов термодинамики. Это соображение, в свою очередь, вынудило нас объяснить, почему именно реакции типа задействованных при горении и предполагаемых в участии в процессах жизнедеятельности называются в терминах термодинамики «спонтанными», внешне таковыми не являясь.

Таким образом, мы перешли к предмету обсуждения предыдущей главы — энергии активации, необходимой для того, чтобы «запустить» спонтанную реакцию.

Так чем же теперь это может нам помочь в нашей основной задаче — исследовании природы живой материи? Предположим, что в организме человека происходят такие же реакции, как и при горении. Соответственно они должны обладать энергией активации, которую организм должен предоставить прежде, чем эти реакции начнут спонтанно протекать, снабжая при этом, в свою очередь, организм энергией, необходимой для его функционирования. И кажется, что все описанное в предыдущей главе к живой ткани никоим образом относиться не может.

Я описал два способа, которыми реагенты могут получить энергию активации, — с помощью тепла и с помощью света, но в живом организме явно не используется ни то ни другое. Температура живой ткани практически никогда не поднимается выше 37 °С, чего явно недостаточно для запуска реакций, сходных с горением. То же самое со световым излучением — живая ткань в принципе может быть источником света (примером тому служат светлячки), но это никогда не бывает излучение с высоким содержанием энергии, достаточным для активации химических процессов. Так как же решают живые организмы задачу предоставления энергии активации?

Может быть, перед нами наконец-то пример неподчинения живой материи законам термодинамики? Может быть, вот он наконец-то, тот четкий критерий, что позволит нам провести границу между живой и неживой материей?

Перед тем как перейти к непосредственному ответу на вопрос, давайте посмотрим, существуют ли в мире неживой природы явления, в которых спонтанная реакция запускается без поступления энергии активации, необходимой в большинстве случаев. Ведь если они существуют, то и в живой ткани вполне может происходить нечто подобное.


Первый значительный пример такого рода был обнаружен в связи с производством серной кислоты.

Серная кислота, как и ряд других сильнодействующих кислот, была открыта в Средние века, став одним из очень важных, хотя и недооцененных, продуктов алхимических опытов. Алхимики слишком концентрировались на поиске рецептов производства золота и слишком мало внимания обращали на действительно важные результаты своих исследований.

Серная кислота действует во много раз сильнее, чем самая сильнодействующая кислота из известных древним (уксусная кислота виноградного происхождения). Она вступает в ряд химических реакций, которые более слабые кислоты или не могут повторить вообще, или повторяют гораздо медленнее. Таким образом, сильнодействующие кислоты в целом и серная кислота в частности явили собой очень действенный химический инструмент, как для исследовательского, так и для промышленного применения. Даже сегодня серная кислота является самым используемым в химической промышленности веществом, если, конечно, не считать повсеместно присутствующих воздуха и воды, да еще, быть может, соли. Ежегодно изготавливается около пятнадцати миллионов тонн серной кислоты, и иногда даже считается, что масштаб индустриализации страны можно определить по количеству потребляемой ею серной кислоты.

Понятно, что важное значение приобрела разработка технологий дешевого и массового производства серной кислоты. На заре современности ее производство было сложным и дорогим процессом с ограниченным объемом.

Причиной тому были не трудности с добычей исходного сырья. Им служит сера (S) — вещество известное еще в древности, широко распространенное и веками добываемое в достаточном количестве и сравнительно легко, например, в Сицилии.

Сера хорошо горит, вступая в соединение с кислородом и образовывая при этом удушливый газ, сернистый ангидрид (SO2). Именно этот газ и дает знаменитый «запах серы», а не сама сера, которая запаха как раз не имеет.

Сернистый ангидрид растворим в воде, соединяясь затем с молекулой воды в «сернистую кислоту» — H2SO3.

S + O2 → SO2,

SO2+H2O → H2SO3.

Действие сернистой кислоты имеет лишь умеренную силу, и к тому же она не очень стабильна. Это не то же самое, что необходимая нам серная кислота, имеющая в своем составе на один атом кислорода больше — H2SO4.

И вот самое сложное — это именно добиться присоединения этого самого последнего атома. Точнее, сернистый ангидрит может и дальше соединяться с кислородом, образовывая при этом серный ангидрид (SO3), а он уже при растворении в воде и даст вожделенную серную кислоту:

2SO2 + O2 → 2SO3,

SO3 + Н2О → H2SO4.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука