Основным предметом математической логики, таким образом, является построение и изучение формальных систем. Центральным результатом здесь является доказанная в 1931 г. австрийским математиком К. Геделем теорема о неполноте, утверждающая, что для любой «достаточно разумной» формальной системы существуют неразрешимые в ней предложения, т.е. такие формулы A, что ни сама формула A, ни ее отрицание не имеют вывода. Если отождествить формальную систему с соответствующей областью математики, то можно сказать, что в любой «достаточно разумной» области математики есть утверждения, которые нельзя ни доказать, ни опровергнуть. Мы не можем здесь точно сказать, что именно требуется от «достаточно разумной» формальной системы; отметим лишь, что большинство формальных систем (в том числе формальная арифметика и аксиоматическая теория множеств) удовлетворяют этим требованиям. На примере теоремы о неполноте мы видим, какую пользу приносит построение формальной системы: мы получаем возможность доказать, что какие-то утверждения недоказуемы!
Изучение формальных систем привело к возникновению многих важных направлений в современной математической логике. Назовем некоторые из них. Теория моделей исследует вопрос о том, как можно придать «смысл» выражениям формальных языков и что при этом получается. Теория доказательств изучает свойства выводов в формальных системах. Важнейшим разделом логики, который сейчас уже можно рассматривать как самостоятельную дисциплину, является теория алгоритмов.
Многие знаки, придуманные логиками для построения формальных систем, постепенно вошли в общее употребление. К ним относятся логические связки ∧ (конъюнкция, «и»), ∨ (дизъюнкция, «или»),
A | B | ¬A | |||
И | И | И | И | И | Л |
И | Л | Л | И | Л | Л |
Л | И | Л | И | И | И |
Л | Л | Л | Л | И | И |
Например, пятый столбец показывает, что утверждение
A | B | ¬A | |||
И | И | И | Л | Л | И |
И | Л | И | Л | Л | И |
Л | И | И | И | И | И |
Л | Л | Л | И | Л | И |
Составив ее, мы увидим, что это утверждение (шестой столбец) всегда истинно, независимо от истинности утверждений A и B. Это не удивительно – ведь его можно прочитать так: «Если верно или A, или B и A неверно, то верно B». Как говорят, это утверждение является логическим законом, или тавтологией. Именно с таких утверждений мы начали обсуждение предмета математической логики.
Смысл кванторов ∀ и ∃ можно объяснить так. Если
которые получаются, если подставить вместо
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
Математическая статистика – наука, изучающая методы обработки результатов наблюдений. Приведем примеры. Из кипы хлопка наугад вытащены пучки и измерены длины попавших в них волокон. Результаты первых 28 замеров (в см) оказались следующими: 2,10; 2,23; 2,14; 2,16; 2,56; 2,05; 2,20; 2,34; 2,18; 1,95; 2,21; 2,46; 2,28; 1,95; 2,54; 2,12; 2,05; 2,15; 2,18; 2,21; 2,34; 2,28; 2,34; 2,20; 2,42; 2,55; 2,12; 2,27. Запись результатов наблюдений в таком виде мало наглядна, занимает много места, и из нее трудно делать выводы. Обычно стремятся данные наблюдений сделать более удобными для восприятия и для последующей обработки. Это особенно важно, когда число наблюдений велико и достигает многих сотен, а то и тысяч. Для этого результаты наблюдений сводят в таблицы. Весь интервал возможных значений разбивают на части (как правило, равной длины) и подсчитывают число наблюдений, попавших в каждый из отрезков. В табл. 1 приведены данные о надое 100 коров. Надой указан в тысячах литров; величина промежутка разбиения – 600 л. Уже беглый взгляд на таблицу показывает, что мало и коров с малым удоем, и коров-рекордисток.