Заметим, что в признаках равенства нельзя взять любую тройку основных элементов, даже если один из них - сторона; на рис. 1 показано, например, что треугольник нельзя однозначно построить по элементам a, b и B: треугольники
Рис. 1
Кроме того, элементы треугольника нельзя задать произвольно, даже если их только три. Например, чтобы можно было построить треугольник по трем сторонам a, b и c, необходимо (и достаточно) (см. Необходимые и достаточные условия), чтобы выполнялись три «неравенства треугольника»:
Углы треугольника связаны более жестким соотношением:
Анализируя первый и второй признаки равенства - по a, b, C или a, B, C, - мы приходим к выводу о том, что остальные элементы треугольника ABC, в частности сторона c, однозначно определяются имеющимися тремя элементами. Для стороны c соответствующие формулы даются теоремами косинусов и синусов:
где
Центральное место в геометрии треугольника занимают свойства так называемых замечательных точек и линий, простейшие из которых мы и рассмотрим. Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке - центре описанной около треугольника окружности (рис. 2). Этот факт следует из свойства серединного перпендикуляра d к отрезку: d состоит из тех, и только тех, точек, которые равноудалены от концов отрезка. Если для треугольника ABC серединные перпендикуляры к AB и BC пересекаются в точке O, то
Рис. 2
Биссектрисы трех внутренних углов треугольника пересекаются в одной точке - центре вписанной в треугольник окружности (рис. 3). Это следует из основного свойства биссектрисы
Рис. 3
Рис. 4
Радиусы описанной, вписанной и вневписанной окружностей R, r, ra
, rb и rc связаны красивым соотношениемra
+ rb + rc = r +4Rа расстояние между центрами вписанной и описанной окружностей ρ можно найти по формуле Эйлера:
ρ2
= R2 -2Rr.Здесь же приведем формулы для площади треугольника:
S = (abc)/4R = pr,
где p - полупериметр треугольника.
Среди свойств биссектрис треугольника выделяется такая теорема: биссектриса внутреннего (внешнего) угла C треугольника ABC делит противоположную сторону внутренним (внешним) образом в отношении, равном отношению прилежащих сторон; на рис. 5
AE:BE=AE':BE'=AC:BC.
Рис. 5
Все три медианы пересекаются в точке M (рис. 6), называемой центроидом треугольника ABC (который также является центром масс для тонкой треугольной пластины). Каждая медиана делится точкой M в отношении 2:1, считая от соответствующей вершины треугольника. Высоты треугольника (или их продолжения) также пересекаются в одной точке H - ортоцентре треугольника (рис. 7).
Рис. 6
Рис. 7
Пусть высоты треугольника ABC пересекают соответственные стороны (или их продолжения) в точках
Теоремы о пересечении высот, медиан, биссектрис треугольника в действительности можно получить из общей «теоремы Чевы» (Д. Чева - итальянский математик, (1648-1734)): отрезки
Рис. 8
ЗАДАЧА НАПОЛЕОНА
Французский император Наполеон Бонапарт был любителем математики. Он находил время заниматься ею для собственного удовольствия, чувствовал в ней красоту и объект, достойный приложения остроумия и изобретательности. Одно из свидетельств тому - несколько составленных им геометрических задач.
Вот как можно сформулировать одну из них:
На сторонах произвольного треугольника ABC внешним образом построены как на основаниях равносторонние треугольники (рис. 1). Доказать, что центры этих треугольников также являются вершинами равностороннего треугольника.