Читаем Энциклопедический словарь юного математика полностью

Еще одно интересное топологическое свойство графа - вложимость в плоскость. Один пример графа, невложимого в плоскость (домики и колодцы), строится следующим образом. На плоскости даны шесть точек Д123 (домики) и K1,K2,K3 (колодцы); можно ли на плоскости провести тропинки от каждого домика к каждому колодцу, так чтобы никакие две тропинки не пересекались? Ответ отрицательный: если мы проведем все тропинки, кроме одной, то для последней тропинки уже не будет места на плоскости. Таким образом, этот граф невложим в плоскость. Другой пример графа, невложимого в плоскость, дан в правом нижнем углу рис. 3 (каждые две из пяти вершин соединены ребром); на этом рисунке два ребра пересекаются. Интересно отметить, что графы, о которых идет речь, являются «эталонами» графов, невложимых в плоскость: любой граф, невложимый в плоскость, содержит хотя бы один из них. Это было доказано польским математиком К. Куратовским (1896-1980).


ПАВЕЛ СЕРГЕЕВИЧ АЛЕКСАНДРОВ

(1896-1982)

П. С. Александров - один из создателей топологии - нового большого направления в современной математике, Герой Социалистического Труда (1969), лауреат Государственной премии СССР (1943), академик (1953).

П. С. Александров прожил большую и яркую жизнь. Он родился в семье врача, в г. Богородске (ныне Ногинск) Московской области. Уже к 14 годам он нашел в математике свое призвание, но, кроме того, очень хорошо знал и любил литературу (особенно поэзию), театр, музыку.

В 1913 г. П. С. Александров становится студентом математического отделения Московского университета. На следующий год он впервые встречается с представителем нового в те годы теоретико-множественного направления - Н. Н. Лузиным и сразу становится его близким учеником. Уже через год, в 19 лет, П. С. Александров, решая задачу, поставленную Н. Н. Лузиным, доказывает теорему о мощности так называемых борелевских множеств и сразу выдвигается в первые ряды московских математиков. Следующая предложенная ему Н. Н. Лузиным задача - так называемая континуум-проблема (см. Множество) - была одной из труднейших математических задач того времени. Относительно неудачная попытка ее решить (как стало ясно в дальнейшем, континуум-проблема и не могла быть решена в круге идей и методов школы Лузина) заставила П. С. Александрова усомниться в своих математических способностях. Он становится режиссером в театре, заведует театральной секцией отдела народного образования, читает лекции по литературе и музыке. Но этот период - лишь краткий эпизод в жизни П. С. Александрова: уже в 1921 г. он возвращается в Московский университет, чтобы никогда его не покидать.

Самый плодотворный период в жизни П. С. Александрова период, когда он вместе с П. С. Урысоном создает основы топологии. В 1921-1924 гг. ими сделан фундаментальный вклад в основы теоретико-множественной топологии; в 1925-1926 гг. П. С. Александров создает теорию гомологий общих топологических пространств, позволившую применить алгебраические методы к задачам теоретико-множественной топологии. За эти работы П. С. Александрова в 1929 г. избирают в члены-корреспонденты Академии наук СССР. С 1929 г. П. С. Александров - профессор Московского университета, а с 1932 г. - президент Московского математического общества. Впоследствии ученый разработал гомологическую теорию размерности, окончательно закрепившую за Александровым репутацию одного из первых математиков тех лет.

Павлу Сергеевичу Александрову принадлежит заслуга в создании научной школы. Человек огромного личного обаяния, высочайшей разносторонней культуры, он обладал способностью буквально притягивать к себе молодых талантливых людей.


------------------------------------------


Если же граф вложим в плоскость, то он разбивает плоскость на  областей, где К - число связных кусков, из которых состоит граф, В - число его вершин, а  Р - число ребер. Это одна из важных формул, доказываемых в топологии графов.

Из топологических свойств, связанных с поверхностями, упомянем два. Первое из них (теорема Эйлера) утверждает, что для связного графа, начерченного на сфере (или гомеоморфной ей поверхности), справедливо равенство

B - P + Г = 2,

где В - число вершин, Р - число ребер графа, а Г - число областей (граней), на которые этот граф разбивает сферу. В частности, это соотношение справедливо для любого выпуклого многогранника.

Другой пример - «теорема о еже»: если из каждой точки поверхности сферы растет «колючка» (ненулевой вектор) и направления «колючек» от точки к точке меняются непрерывно, то найдется хотя бы одна «колючка», направленная перпендикулярно к сфере. Иначе говоря, причесать такого «сферического ежа», чтобы он нигде не кололся, невозможно.


ЛЕВ СЕМЕНОВИЧ ПОНТРЯГИН

(1908-1988)

Перейти на страницу:

Похожие книги