Читаем Энциклопедический словарь юного математика полностью

Меняя местами условие и заключение и оставляя без изменения разъяснительную часть, мы получаем новую теорему, которая называется обратной первоначальной. Например, для рассмотренной выше теоремы обратной будет следующая: (для любых точек A,B,M) (точка M принадлежит оси симметрии точек A и B)   (MA=MB). Короче: если точка M принадлежит оси симметрии точек A и B, то точка M одинаково удалена от точек A и B. В данном случае и исходная теорема, и обратная ей теорема справедливы.

Однако из того, что некоторая теорема верна, не всегда следует, что обратная ей теорема также верна. Например, теорема: (точка C не принадлежит прямой AB) (AB справедлива, но обратная ей теорема: (точка C не принадлежит прямой AB) - неверна, так как при условии (AB точка C может быть расположена на прямой AB, но вне отрезка AB (рис. 2).

Рис. 2

Таким образом, доказав некоторую теорему, мы еще не можем утверждать, что верна и обратная теорема. Справедливость обратной теоремы требует отдельного доказательства.

В алгебре примерами теорем могут служить различные тождества, например равенства:

(a + b)2 = a2 + 2ab + b2,

a2-b2 = (a+b)(a-b),

an - bn = (a-b)(an-1+ an-2b + an-3b2 +...+ abn-2 + bn-1).

Они выводятся (доказываются), исходя из аксиом, и потому являются теоремами. Другим примером теорем в алгебре может служить теорема Виета о свойствах корней квадратного уравнения.

Большую роль в математике играют так называемые теоремы существования, в которых утверждается лишь существование какого-либо числа, фигуры и т.п., но не указывается, как это число (или фигура) могут быть найдены. Например: всякое уравнение xn + a1xn-1 + a2xn-2+...+ an-1x + an = 0 с действительными коэффициентами имеет при нечетном n хотя бы один действительный корень, т.е. существует число x0∈R, являющееся корнем этого уравнения.

Некоторым видам теорем дают особые названия, например лемма, следствие. Они имеют дополнительный оттенок. Леммой обычно называют вспомогательную теорему, саму по себе мало интересную, но нужную для дальнейшего. Следствием называют утверждение, которое может быть легко выведено из чего-то ранее доказанного.

Иногда теоремой называют то, что правильнее было бы называть гипотезой. Например, «великая теорема Ферма» (см. Ферма великая теорема), утверждающая, что уравнение xn + yn = zn не имеет целых положительных решений при n>2, пока не доказана.

Наряду с аксиомами и определениями теоремы являются основными типами математических предложений. Важные факты каждой математической науки (геометрии, алгебры, теории функций, теории вероятностей и т.д.) формулируются в виде теорем. Однако овладение математикой не сводится к тому, чтобы изучить аксиомы, определения и основные теоремы. Математическое образование включает также умение ориентироваться в богатстве фактов математической теории, владение основными методами решения задач, понимание лежащих в основе математики идей, умение применять математические знания при решении практических задач.

Не менее важны пространственное представление, навыки графического «видения», умение находить примеры, иллюстрирующие то или иное математическое понятие, и т.д. Таким образом, теоремы составляют только формальный «остов» математической теории, и знакомство с теоремами представляет собой лишь начало глубокого овладения математикой.


ТЕТРАЭДР


Тетраэдр, или треугольная пирамида, - простейший из многогранников, подобно тому как треугольник - простейший из многоугольников на плоскости. Слово «тетраэдр» образовано из двух греческих слов: tetra - «четыре» и hedra - «основание», «грань». Тетраэдр ABCD задается четырьмя своими вершинами - точками A,B,C,D, не лежащими в одной плоскости; грани тетраэдра - четыре треугольника; ребер у тетраэдра шесть. В отличие от произвольной n-угольной пирамиды (при n≥4) в качестве основания тетраэдра может быть выбрана любая его грань.


Перейти на страницу:

Похожие книги